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Previous lecture (#1)Previous lecture (#1)

• What is scientific computing?
– And what it s not … it s not LaTeX, ssh, usual apps …

– It s about scientific discovery through simulation.  A complex workflow …
– … leading to the often overlooked topic of…

• Verification and validation
– Importance of grid convergence study (even for grid-free methods!):  theoretical

vs. observed order of convergence

• Basic toolbox of numerical analysis
– Vector, matrix operations; interpolation; discrete derivatives; integration;

systems of equations; Fourier transforms; time stepping of ODEs; stochastic
tools … how to?  first step: Numerical Recipes

• Which programming language … ?
– Concepts of object-orientation
– Fortran? Lots of legacy code + performance concerns with OOP

• Matlab, and other software packages + Numerical Libraries
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This, second lectureThis, second lecture……

• Most important algorithms of the 20th century

• Parallel implementation of scientific codes

• Revisit the subject of “which programming language?”

DISCLAIMER
• Presentation biased by my own opinion.

• There are other opinions, all legitimate
• Sometimes, you have no choice!

– Supervisor wants you to use X language, non-negotiable

– Need to work with legacy code: stuck with it
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The issue of programming language revisitedThe issue of programming language revisited

• Fortran 77 -- I say, forget it!
– Difficult to represent data structures succinctly
– Lack of dynamic storage means that all arrays must have a fixed size

which cannot be exceeded
– Variable names only 6 characters long

– Fixed form source format -- argh!

• Fortran 90 -- an “abused language”
– People take little bits to improve their f77 codes, rarely use it how it

was intended

• F90 has very powerful array facilities …
– But f90 is not just allocatable arrays!  More powerful than that.
– Free form:  the most obvious change from f77

– Derived types and operator overloading
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Fortran 90 arraysFortran 90 arrays

• You can make any array section you can dream of…

A rank 2 array; the matrix composed of elements of “B” with first
index going from 1 to 4, and second index going from 2 to 2

B(1:4,2:2)

“B” is a rank 2 array; we are taking all the elements of the second
dimension of “B” such that dimension 1 has index 2

B(2,:)

Elements 2 to 6 in steps of 2, i.e., elements 2, 4, 6A(2:6:2)

Elements 2 to 5A(2:5)

Now we only have up to element 5A(:5)

Now we have from element 2 upA(2:)

“A” is a rank one array and we are using all of itA(:)
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Fortran 90 array arithmeticFortran 90 array arithmetic

• Arrays can be added, subtracted, multiplied, etc., element-wise

• Plus many intrinsic functions…
matmul(), transpose(), sum(), dot_product(), size()

Square each element of “A” and put the result
back in “A”

A = A**2

Take the second dimension of “b”
corresponding to the first index equal to 2, and
use that in the expression.  All arrays are rank
one.

real :: a(10), b(10,10)

real :: d(10)

a = a + b(2,:) / d

Multiply each element in “B” by the
corresponding element in “C” and put the result
in the corresponding element of “A”

A = B * C

Assign all elements of array “A” to the
corresponding elements of array “B”

A = B
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Fortran 90 allocatable arraysFortran 90 allocatable arrays

• Allocatable arrays are an important addition in Fortran 90, and one
that most people know about
– Allocatable arrays allow the sizing of an array to be postponed until it

is known

if ( allocated(a) ) then

...

Testing status

deallocate(a,b)Deallocation

allocate( a(5,5), b(4,10) )

allocate( a(2:5,10:2:-2), b(0:jmax) )

Allocation

real, allocatable                 :: a(:,:)

real, dimension(:,:), allocatable :: b

Declaration
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Fortran 90 allocatable arraysFortran 90 allocatable arrays

• Limitations
– It s not possible to use allocatable arrays to build an expandable data

storage structure “on the fly”
– If your “dynamic array” needs to grow, then the solution is long-

winded:
• Create a temporary array, copy the contents of array that needs to grow

• Deallocate the old array, and allocate again to desired size
• Copy back the data held in the temporary…
• Destroy the temporary array…

– Can t put allocatable arrays in abstract data types.

• New standard: Fortran 2003, allows allocatable arrays to “grow”
(but not yet available from compiler makers)
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Fortran 90 derived data typesFortran 90 derived data types

• Derived data types are a major and welcome addition in Fortran 90
– User-defined type:  data structure made up of simple types (real, integer) and

other user-defined types, that can be treated like built-in types.

– The only thing you cannot put in a user-defined type is an allocatable array
(f90).  However, a pointer can be used to obtain the results.

– Also called Abstract Data Type (ADT)

variable_name%componentAccess a
component

type (typeName)  :: variable_nameDeclare an
instance

type typeName

  ! Variable declaration goes here

end type

Define the type
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C++ classesC++ classes

• In C++, abstract data types are built using classes
– Key feature of a class  is the separation of interface and

implementation
– Class: defines a type of object by specifying the data it contains and

methods that interact with the data

• Example:  abstraction for a particle
– Described by:

• its mass,

• a pair of 3-vectors for its position and velocity

– Methods:
• advancing the particle in phase space

• computing its kinetic energy
• construction or initialization function (how to create an instance of an

object particle )
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Example: definition of a class Example: definition of a class ‘‘particleparticle’’

class Particle {

  private:

    double mass;

    double position[3], velocity[3];

  public:

    Particle(double imass=0.0)  {

      mass = imass;

      for (int i=0; i<3; i++) {

        position[i] = 0.0;

        velocity[i] = 0.0;     } }

    virtual ~Particle() { }

    virtual double Position(int i) const { return position[i]; }

    virtual double Velocity(int i) const { return velocity[i]; }

    virtual double Kinetic_Energy() const {

      double ke = 0.0;

      for (int i=0; i<3; i++) ke += velocity[i]*velocity[i];

      return mass*ke;                      }

    virtual double Charge() const { return 0.0; }

};

constructor

destructor
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EncapsulationEncapsulation

• The internal data is accessed only through fixed interfaces.
– If later the class “Particle” is redesigned to use momentum instead of velocity for its

internal representation, no code calling the member functions of this class need be
changed.  Only the member functions require changing:

class Particle {

  private:

    ...

    double position[3], momentum[3];

  public:

    ...

    virtual double Velocity(int i) const {

      return momentum[i]/mass;           }

    virtual double Kinetic_Energy() const {

      double ke = 0.0;

      for (int i=0; i<3; i++) ke += momentum[i]*momentum[i];

      return ke/mass;

    }

    ...

};
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Class Class ‘‘ParticleParticle’’ member functions member functions

• A member function Charge() is provided:
virtual double Charge() const { return 0.0; }

– Here it simply returns 0; the particle has no data describing its charge

• Functions declared as virtual :
– Another class which inherits from Particle  may override, or redefine, the

behavior of these functions while maintaining the same interface

• Use of the class:
Particle  p1, p2;

– Creates two concrete objects, “p1” and “p2”
double ke_of_p1 = p1.Kinetic_Energy();

– Obtains the kinetic energy of particle “p1” using the dot syntax.

How to implement the abstract type “particle” in f90?
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F90F90  objectsobjects  –– two features: type and module two features: type and module

• TYPE allows grouping data together, but does not associate
methods with the data:

TYPE Particle

    REAL mass

    REAL, DIMENSION(0:2) :: position, velocity

END TYPE Particle

• Declare an instance and access its data:

TYPE(Particle)  :: p1

    REAL :: partsmass = p1%mass

• Encapsulation:  place the TYPE inside a MODULE
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Abstract object Abstract object ‘‘particleparticle’’ in f90 in f90

MODULE ParticleModule

TYPE Particle

  PRIVATE

  REAL mass

  REAL, DIMENSION(0:2) :: position, velocity

END TYPE Particle

CONTAINS

SUBROUTINE Initialize(p,imass)

  TYPE(Particle), INTENT(INOUT) :: p

  REAL, OPTIONAL :: imass

  INTEGER I

  IF (PRESENT(imass)) THEN

p%mass = imass

  ELSE

p%mass = 0.0

  ENDIF

Resets the default access within the current code block
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Abstract object Abstract object ‘‘particleparticle’’ in f90 - part 2 in f90 - part 2

  DO i=0,2

p%position(i) = 0.0

p%velocity(i) = 0.0

  END DO

END SUBROUTINE Initialize

REAL FUNCTION Position(p,i)

  TYPE(Particle), INTENT(IN) :: p

  INTEGER, INTENT(IN) :: i

  Position = p%position(i)

  RETURN

END FUNCTION Position

REAL FUNCTION Velocity(p,i)

  TYPE(Particle), INTENT(IN) :: p

  INTEGER, INTENT(IN) :: i

  Velocity = p%velocity(i)

  RETURN

END FUNCTION Velocity
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Abstract object Abstract object ‘‘particleparticle’’ in f90 - part in f90 - part  33

REAL FUNCTION KineticEnergy(p)

  TYPE(Particle), INTENT(IN) :: p

  INTEGER I

  REAL :: ke = 0.0

  DO i=0,2

  ke = ke + (p%velocity(i))**2

  END DO

  KineticEnergy = p%mass * ke

  RETURN

END FUNCTION KineticEnergy

REAL FUNCTION Charge(p)

  TYPE(Particle), INTENT(IN) :: p

  Charge = 0.0

  RETURN

END FUNCTION Charge

END MODULE ParticleModule
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Abstract object Abstract object ‘‘particleparticle’’ in f90 -- usage in f90 -- usage

• Define particles in a code segment:

USE ParticleModule

TYPE(Particle) :: p1, p2

Initialize(p1)

Initialize(p2)

• Summary: F90 does allow abstract objects by combining TYPEs
and procedures (SUBROUTINE and FUNCTION) in a MODULE.

– TYPE - contains the internal data (encapsulated by PRIVATE)

– MODULE - provides an interface via procedures that are public and
operate on the contained TYPE.
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Inheritance and polymorphismInheritance and polymorphism

• Define a new abstract object that inherits the old data and methods,
– Can alter the behavior of some functions

– Can add new data or methods as needed
class Nucleus : public Particle {

  private:

    int numProtons, numNeutrons;

    static double elemCharge;

  public:

    Nucleus(int inumProtons, int inumNeutrons, double imass=0.0)

    : Particle(imass) {

      numProtons = inumProtons;

      numNeutrons = inumNeutrons;    }

    ~Nucleus() { }

    double Charge() const {

      return numProtons*elemCharge;    }};
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Inheritance and polymorphismInheritance and polymorphism

• Declare two concrete objects:
Particle p;

Nucleus n;

– Then p.Charge() returns the charge according to the definition of

Particle (i.e., returns 0.0), while n.Charge() returns the charge

as dictated in Nucleus.

• Polymorphism using pointers:

Particle *pptr; declare a pointer to a Particle object

pptr = &p; asigned a value with the address-of symbol

pptr->Charge(); arrow syntax to get object particle “p” by pointer

...

pptr = &n; allowed because Nucleus is a kind of Particle

pptr->Charge(); now uses the Nucleus Charge() function!
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Creating a Nucleus object in f90Creating a Nucleus object in f90

MODULE NucleusModule

USE ParticleModule

TYPE Nucleus

  PRIVATE

  TYPE(Particle) p

  INTEGER numProtons, numNeutrons

END TYPE Nucleus

REAL, PRIVATE, PARAMETER :: elemCharge = 1.6e-19

SAVE

INTERFACE Initialize

  MODULE PROCEDURE Initialize, NucInitialize

END INTERFACE Initialize

INTERFACE Position

  MODULE PROCEDURE Position, NucPosition

END INTERFACE Position

! Similar interfaces for Velocity, KineticEnergy, Charge
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Creating a Nucleus object in f90 - part 2Creating a Nucleus object in f90 - part 2

CONTAINS

SUBROUTINE NucInitialize(n,inumProtons,inumNeutrons,imass)

  TYPE(Nucleus), INTENT(INOUT) :: n

  INTEGER, INTENT(IN) :: inumProtons, inumNeutrons

  REAL, OPTIONAL, INTENT(IN) :: imass

  Initialize(n%p,imass)

  n%numProtons = inumProtons

  n%numNeutrons = inumNeutrons

END SUBROUTINE NucInitialize

REAL FUNCTION NucPosition(n,i)

  TYPE(Nucleus), INTENT(IN) :: n

  INTEGER, INTENT(IN) :: I

  NucPosition = Position(n%p,i)

  RETURN

END FUNCTION NucPosition

! Similar functions for NucVelocity, NucKineticEnergy
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Creating a Nucleus object in f90 - partCreating a Nucleus object in f90 - part  33

...

REAL FUNCTION NucCharge(n)

  TYPE(Nucleus), INTENT(IN) :: n

  NucCharge = n%numProtons * elemCharge

  RETURN

END FUNCTION NucCharge

END MODULE NucleusModule

• There is no way to inherit procedures because the two TYPES are
not interchangeable as arguments

• Must recode FUNCTIONs of ParticleModule for NucleusModule

• Cumbersome INTERFACE structure

• … much longer code, harder to maintain.



22 and 30 May 2006
Post-graduate lectures
Department of Mathematics 23

Conclusion on Fortran Conclusion on Fortran vsvs. C++. C++

• Fortran90 allows object-based programming using the elements
TYPE and MODULE.

• C++ is an object-oriented programming language, supporting
inheritance and polymorphism

• F90 lacks inheritance and does not permit code reuse to same
extent as C++

• C++ does not have a built-in array type with simple array syntax
– Provided by C++ array class libraries

• Another C++ feature lacking in f90 is “templates” for generic
programming
– No time to discuss it here.
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The development of new numerical algorithms is
crucial, and leverages huge hardware investments.

Modern AlgorithmsModern Algorithms
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Top 10 Algorithms of the 20th CenturyTop 10 Algorithms of the 20th Century

• 1946: The Monte Carlo method.

• 1947: Simplex Method for Linear Programming.

• 1950: Krylov Subspace Iteration Method.

• 1951: The Decompositional Approach to Matrix Computations.

• 1957: The Fortran Compiler.

• 1959: QR Algorithm for Computing Eigenvalues.

• 1962: Quicksort Algorithms for Sorting.

• 1965: Fast Fourier Transform.

• 1977: Integer Relation Detection.

• 1987: Fast Multipole Method.
Dongarra & Sullivan, IEEE Comput. Sci. Eng., Vol. 2(1):22--23 (2000). 
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Monte Carlo methodMonte Carlo method

• Also known as the “Metropolis algorithm”
– Aims to obtain approximate solutions to numerical problems with

unmanageably many degrees of freedom and to combinatorial
problems of factorial size, by mimicking an random process.

– PDFs, probability density functions, describe the physical or
mathematical system

– Many simulations (“trials”) are performed
– Results taken as an average; errors can be predicted

• Applications
– Graphics (ray tracing)
– Finance

– Particle physics
– Mathematics:  integration in many dimensions
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Quicksort Quicksort algorithmalgorithm

• Put N things in numerical or alphabetical order:  a mundane
problem!  Challenge: doing so quickly.

• “Divide and conquer” strategy

• The steps are:
1. Pick an element, called a pivot, from the list.
2. Reorder the list so that all elements which are less than the pivot

come before the pivot and all elements greater than the pivot come
after it. After this partitioning, the pivot is in its final position. This is
called the partition operation.

3. Recursively sort the sub-list of lesser elements and the sub-list of
greater elements.

– Runs on average with O(N log N) efficiency
– Major improvement over O(N2) algorithm
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Fast Fast Multipole Multipole MethodMethod

• For N-body simulations:
– How to predict the motions of N particles interacting via gravitational or

electrostatic forces (stars, atoms)?
– Accurate calculations seem to require O(N2) calculations

• Gravitational force:  two masses

• N-body gravitational field:

• … and gravitational potential:

Direct evaluation of such a sum at N target points clearly results in O(N2) operations.

Inverse 

square law
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Fast Fast Multipole Multipole Method - key ideaMethod - key idea

• Simple example: consider

– Direct summation will require MN operations
• Instead, can write the sum as:

– Can evaluate each bracketed sum over j then evaluate an expression
of the type:

– Requires O(M + N) operations

• Key idea – use analytical manipulation of series to achieve faster
summation.
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FMM FMM ““philosophyphilosophy””

• In scientific computing we almost never seek exact answers

• At best, “exact” means to “machine precision”

• Instead of solving a problem, solve a “nearby” problem that gives
“almost” the same answer.

• FMM:
– Express functions in some appropriate functional space with a given

basis
– Manipulate series to achieve approximate evaluation

– Use analytical expression to bound the error

• E.g. astrophysics
– At some distance from the sources, the gravitational field is smooth

and should be representable in some compressed form.
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Hierarchical decomposition of spaceHierarchical decomposition of space

• An essential part of the FMM is the data structure used to
subdivide space:
– Quadtree (2D)
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Hierarchical decomposition of spaceHierarchical decomposition of space

• Begin by constructing a quadtree to store the particles
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Idea of Idea of Multipole Multipole ExpansionsExpansions

• Recall: gravitational potential - satisfies the Poisson equation
– In 2D
– N points in the plane, with masses

• Multipole expansion of the potential
– A kind of Taylor expansion, but which is accurate when x2+y2 is large

… just a flavor of the FMM - would take a full lecture to present all of it 
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Two parallelization models:

MPI – distributed-memory machines
OpenMP – shared-memory machines

(MPI is most prevalent model today)

Parallel ComputingParallel Computing
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MPI -- Message Passing InterfaceMPI -- Message Passing Interface

• Simply a collection of subroutines (in C or Fortran) which enable
processors to exchange data.
– Very portable
– Rather steep learning curve
– Each processor is running its own copy of the program

– Different processors may take different paths through the code
(because of conditional statements)

• In Fortran:
– Include MPI header file

program myProgram

implicit none

include ‘mpif.h’

...
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Basic MPIBasic MPI  in Fortranin Fortran

• Initialization/Finalization
integer error

call MPI_INIT(error)

...

call MPI_FINALIZE(error)

end program

• Communicators
– Like a network linking certain processors
– Global communicator:  MPI_COMM_WORLD
– Determine the number of processors in a communicator
integer num_procs, error

call MPI_COMM_SIZE(MPI_COMM_WORLD, num_procs, error)

! num_procs will have been set to the number of processors

! in MPI_COMM_WORLD
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Collective communicationsCollective communications

• Broadcast
– Send some data to all other processors in a communicator
integer n = 10

integer error

integer bcastProc = 0 ! broadcasting processor

real*8 array(n)

call MPI_BCAST(array,size(array),MPI_REAL8,bcastProc, &

               MPI_COMM_WORLD,error)
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Collective communicationsCollective communications

• Scatter
– Sender divides some array of data up into as many portions as there

are processors, and sends each processor one portion
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Collective communicationsCollective communications

• Gather
– The opposite of scattering: each processor has an array of data, and

all of these are gathered and delivered to one processor
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Parallel Scientific Libraries -- Parallel Scientific Libraries -- PETScPETSc

• A powerful set of tools for the numerical solution of partial
differential equations and related problems on high-performance
computers.

• MPI almost invisible to the programmer

• PETSc objects:
– Parallel vectors, matrices

– Krylov subspace methods
– Nonlinear solvers
– Time steppers

• Based on BLAS, LAPACK, MPI

• Developed at Argonne National Laboratory; fully supported; free.
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PETSc PETSc examplesexamples

Vec x, b, u;

Mat A;

...

ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);

ierr = VecDuplicate(x,&b);CHKERRQ(ierr);

ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);

• Etc.
– Create matrices and vectors, let the library distribute among procs
– Call solvers, use preconditioners… all in parallel

• Google:  petsc


