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Objectives of course (I & II):

• Give an introduction to turbulent flow 

       characteristics and physics, 

• Provide a first, basic understanding of standard 

       turbulence models used in Computational

       Fluid Dynamics (CFD)

• Provide basic understanding of Direct Numerical (DNS)

       and Large Eddy Simulation (LES)

• Illustrate state-of-the-art subgrid model for LES 

       and applications. 

Prerequisites:

• Basic Fluid Mechanics,

• Tensors and Index Notation

Outline (I):

• Overview of turbulent flow characteristics, 

• Reynolds decomposition, 

• Turbulence physics and energy cascade, 

•Turbulence modeling for CFD:

        Eddy-viscosity and k-! model

• Filtering, Large Eddy Simulation (LES)

• Direct Numerical Simulation (DNS)

Outline (II):

• Smagorinsky model and coefficient calibration, 

• Non-universality and problems in complex flows, 

• Dynamic model and applications

Turbulent flows:

•multiscale, 

•mixing, 

•dissipative, 

•chaotic, 

•vortical

•well-defined statistics, 

•important in practice
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e.g. 50 m

H

Turbulence in atmospheric boundary layer

Turbulence in reacting flows:

Premixed flame in I.C.

engine, combustion

Numerical simulation of flame

propagation in decaying

isotropic turbulence

Turbulence in aerospace systems:

LES of flow in thrust-reversers

Blin, Hadjadi & Vervisch (2002)

        J. of Turbulence.



Turbulence in thermofluid equipment:
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Turbulence in turbomachines:

Lattice of wakes:

Superimposed Image of 10 Different Rotor Phases

at 500 rpm and at the Mid-span location. x=0 is at

rotor leading edge. The stage length is Ls = 203

mm.

Optical velocity field measurements in index-matched axial pump
Phase-averaged turbulent kinetic energy distribution

(Uzol, Katz & Meneveau, J. Turbomach. 2003)

Simplest turbulence: Isotropic decaying turbulence
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JHU Corrsin wind tunnel

Physical laws governing fluid flow

•Conservation of mass

•Newton’s second law

•First law of thermodynamics

•Equation of state

•Some constraints in closure relations from second law of TD

•Density field

•Velocity vector field

•Pressure field 

•Temperature field (or internal energy, or enthalpy etc..)

Physical quantities describing fluid flow

Navier Stokes equations for a Newtonian, incompressible fluid



Navier-Stokes equations, incompressible, Newtonian
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Turbulence: Reynolds decomposition
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Turbulence: Reynolds decomposition
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Reynolds’ equations:

t

• Reynolds stress

• Energy cascade

• Spectral energy tensor

• Isotropic turbulence

• Kolmogorov spectrum (1941)
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Written as velocity co-variance tensor:

! jk
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• Kinematic Reynolds stress (minus): • Kinematic Reynolds stress (minus):
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• Deviatoric (anisotropic part):
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• Kinematic Reynolds stress (minus):
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Unknowns: mean velocity and 

pressure field

Closure required for Reynolds

stress tensor: express stress

in terms of mean velocity field…
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! jk (k1,k2 ,k3) :   Spectral tensor of turbulence

 (how much energy there is in each wave vector k)

In homogeneous isotropic turbulence (simplest case, with no preferred

directions) the spectral tensor function of a vector can be expressed based on

a single scalar function of magnitude of wavenumber, E(k):
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• What is the dependence of energy density E(k) 

  with wavenumber?

We now discuss the energy cascade 

and Kolmogorov theory of turbulence

• Turbulence Physics: the energy cascade

   (Richardson 1922, Kolmogorov 1941)
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• Turbulence Physics: the energy cascade

   (Richardson 1922, Kolmogorov 1941)

Big whorls have little whorls,

which feed on their velocity,

and little whorls have lesser whorls,

and so on to viscosity (in the molecular sense)

• Turbulence Physics: the energy cascade

   (Richardson 1922, Kolmogorov 1941)

Injection of kinetic energy into

turbulence (from mean flow)  
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heat (due to molecular friction)
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• Turbulence Physics: the energy cascade

   (Richardson 1922, Kolmogorov 1941)

Injection of kinetic energy into

turbulence (from mean flow)

Dissipation of kinetic energy into

heat (due to molecular friction)
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Dimensional Analysis (Pi-theorem: 3-2=1):

E  k
5 /3

!
2 /3

= const

E(k) = c
K
!
2 /3
k
"5 /3

Solid experimental

support for K-41:

Supports (approximately)
the notion that ! is the only

relevant physical scale in

the inertial range,

+ L at large scales
+ " at small scales

!

   
E(k) = c

K
!

2/3
k
"5/3,    c

K
~ 1.6

Solid line is equivalent of a 3D radial spectrum equal to

Back to Closure problem for Reynolds equations:

 
!T ! (velocity scale) " (length scale)
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“Eddy-viscosity”

Kolmogorov:

Characterization of turbulence: minimum 2 variables
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Eddy-viscosity scaling:
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Transport equations for K(x,t) and !(x,t)

Empirical calibrations:

5 adjustable coefficients 
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Launder & Spalding (1972) - but earlier (1940s) Kolmogorov K-# model
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K-! model for turbulence mean flow predictions:

+ boundary (& initial) conditions
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Direct Numerical Simulation:

N-S equations:
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Moderate Re

(~ 103),

DNS possible

High Re

(~ 107),

DNS impossible
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Regions of large vorticity in isotropic turbulence

World-record DNS (Nagoya

group in Japan):

Source: Kaneda & Ishihara,

J. of Turbulence, 2006 © Taylor & Francis

On Earth Simulator (2003)

4,0963 grid points

~ 2 Terabytes at each time-step

Thousands of time-steps

$

G(x): Filter

Large-eddy-simulation (LES) and filtering:
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Large-eddy-simulation (LES) and filtering:

N-S equations:
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Useful references:

• S. Pope: Turbulent Flow 

       (Cambridge Univ. Press, 2000)

• J. Ferziger & M. Peric: Computational Methods for 

       Fluid Dynamics (Springer, 1996)


