
a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

AlfaAlfa--SCATSCAT
Scientific Computing Advanced TrainingScientific Computing Advanced Training

MPI Message Passing
- Basics

Dr Mike Ashworth
Computational Science & Engineering

Dept
CCLRC Daresbury Laboratory &

HPCx Terascaling Team

impaimpa

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Outline

• Introduction
• Getting Started
• Point-to-Point Operations
• Collective Operations

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Disclaimer

• MPI is usually the subject of a course running over (at
least) several days

• This will be a very broad overview of the subject in two
lectures with practical sessions

I will go quickly …
… there will be material missing …

… but hopefully it will give you a useful introduction

• You should follow up with in-depth courses or self-
study

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message Passing Interface -
Introduction

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Before MPI

• In the early days (1980s) of MIMD distributed memory
systems there were many message passing systems

• Some vendor-specific
– Intel iPSC systems: isend, irecv

• Some portable
• PVM (Parallel Virtual Machine)

– designed for networks of workstations
– many advanced features
– heterogenous – translation between different datatypes
– process spawning and deletion
– fast ‘bufferless’ send & receive for MPP systems

• PARMACS
– Macro/library abstraction maps standard calls onto underlying

message-passing system

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

What is MPI?

• The MPI is a de facto standard
– cf. Fortran and C which are ISO & ANSI standards

• It was developed by a Consortium of users, software
developers and hardware vendors
– Message Passing Interface Forum
– 40 organisations

• Version 1.0 - 5th May 1994
• Version 1.1 & 1.2 clarifications & corrections
• MPI-1 standard contains 128 subroutines

– Bindings for Fortran 77 and C
– Defines communicators – subsets of processes
– Point-to-point message passing – send & receive
– Variants for non-blocking sends & receives
– Global operations
– Derived datatypes

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI-2

• MPI-2 was defined 18th July 1997
• MPI-2 includes MPI-1.2 and provides extensions for

– Process creation and management
– Single-sided communications
– Extended collective operations
– Parallel input/output
– Extended language bindings – C++ & Fortran 90

• MPI-1 is still well-suited and sufficient for most
applications

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI implementations

• MPI defines how MPI should function and gives advice to
implementers and to users

• The standard document is actually very readable
• Most parallel computer vendors have designed their

own implementations, some of which take advantage of
their special hardware features

• There is a reference or portable implementation called
MPICH freely available from

http://www-unix.mcs.anl.gov/mpi/mpich/

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI Resources

• MPI Home
http://www.mpi-forum.org/

http://www-unix.mcs.anl.gov/mpi/
– Contains MPI documentation (english)

• Google “MPI exercises” leads to several sites
• “The Book”

Using MPI-2 - Advanced
Features of the Message
Passing Interface,
William Gropp, Ewing
Lusk and Rajeev Thakur

Example programs available on the Argonne website

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message Passing Interface –
Getting Started

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Communicators

• The MPI communicator is a powerful concept
• It is a handle referring to a set of tasks
• All communication operations take place in the context

of a communicator
• Every MPI program starts with a pre-defined

communicator MPI_Comm_World (via mpi.h/mpif.h)
which refers to all the tasks started by the OS
– Defines number of tasks, n, and each task has a rank, 0 to n-1
– Can derive sub-communicators from MPI_Comm_World which

have a different (smaller) number of tasks with different ranks
– Can not extend MPI_Comm_World

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI Init and Finalize

• Every legal MPI program must start with MPI_Init and
end with MPI_Finalize …

call MPI_Init (ierr)
…
…
calls to other MPI subroutines
…
…
call MPI_Finalize(ierr)

calls to MPI routines are not allowed outside MPI_Init …
MPI_Finalize (apart from MPI_Initialised inquiry)

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI finding Size & Rank

• Usually the first things you do is find out the Size of
MPI_Comm_World and your own Rank within it:

call MPI_Comm_Size (MPI_Comm_World, size, ierr)

call MPI_Comm_Rank (MPI_Comm_World, rank, ierr)

0 <= rank < size

• These can also be used for user-defined communicators
• The size of MPI_Comm_World is determined by how you

launched the job e.g.
mpirun –np 32 a.out

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI Hello World!

program hello
include ‘mpif.h’
integer ierr, rank, size
call MPI_Init (ierr)
call MPI_Comm_Size (MPI_Comm_World, size, ierr)
call MPI_Comm_Rank (MPI_Comm_World, rank, ierr)
write (*,*) ‘Hello World - I am process ‘,rank,’ of ‘,size
call MPI_Finalize (ierr)
stop
end

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Basic send & receive

• Define data as a triplet:
– Start address, buf
– Number of elements, count
– Datatype

• Define message source/destination as triplet:
– rank (source or destination)
– tag (arbitrary integer to label messages)
– communicator (MPI_Comm_World or user-defined)

call MPI_Send (buf, count, datatype, dest, tag, comm, ierr)

call MPI_Recv (buf, count, datatype, source, tag, comm,
status, ierr)

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Six subroutines

• You can arguably construct any parallel program out of
these six subroutines:
– MPI_Init & MPI_Finalize
– MPI_Comm_Size & MPI_Comm_Rank
– MPI_Send & MPI_Recv

• If that were all there is to MPI
– this course would be very short!
– your program would be long-winded and inefficient

• But before we move on to look at MPI in more detail …

Let’s try some exercises

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

UTFSM cluster

• You can find exercise 1 in
/home/local/scat/parallel-course/ex1/

• Copy files into your own
~/parallel-course/ex1/

• There is a README
• makefile is provided using mpif77
• If you wish to use C change to mpicc
• Job script hello.job is provided

run using ‘qsub hello.job’

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Exercise 1

• Write a program hello.f that uses MPI and has each MPI
process print

Hello World - I am process i of n
• using the rank in MPI_Comm_World for i
• and the size of MPI_Comm_World for n

• You may want to use these MPI routines in your
solution:

MPI_Comm_Rank, MPI_Comm_Size, MPI_Finalize, MPI_Init

• What order does the output appear in?
• Is it always the same?

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Exercise 2

• How can “Hello World” be adapted to print messages in
order?

• Add MPI_Send and MPI_Recv to the hello.f program so
that the worker processes send their message to the
master (rank 0) and the master does all the prints

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message Passing Interface –
Point-to-Point

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Defining data

• The send & receive buffers are defined by count items
of type datatype starting at address buf

• Counting elements (not bytes) is machine independent
• Basic types are provided:

MPI_Packed

MPI_Byte

character(1)MPI_Character

logicalMPI_Logical

complexMPI_Complex

double precisionMPI_Double_Precision

integerMPI_Integer

realMPI_Real

Fortran datatypeMPI datatype a similar (longer)
list exists for C

others may be
supported e.g.
MPI_Real8 to match
with real*8

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Derived Datatypes

• In addition to the basic datatypes, it is possible to build
derived datatypes

• They allow you
– to send mixed data e.g. integers and reals as a single message
– to send non-contiguous data

• MPI provides a large number of datatype constructors
to generate a datatype for equally spaced blocks

MPI_Type_Vector(count, blocklength, stride, oldtype, newtype)

e.g. for the row of a real array of dimension(n,m)
MPI_Type_Vector(m, 1, n, MPI_Real, rowtype)

then rowtype can be used in send/receive calls
MPI_Send(a(1,1),1,rowtype,…

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Wildcards

• MPI messages are non-overtaking
– if one process send two messages to another, then they will be

received in the order they were sent

• MPI_ANY_SOURCE
– A receive may use MPI_ANY_SOURCE as the source rank
– This matches with a message from any rank

• MPI_ANY_TAG
– A receive may use MPI_ANY_TAG as the message tag
– This matches with a message with any tag

• Use only when necessary and beneficial
• It is much safer to specify the source and tag when you

know them

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Deadlock

• Process 0
call MPI_Send (…, 1, …)
call MPI_Recv (…, 1, …)

• Process 1
call MPI_Send (…, 0, …)
call MPI_Recv (…, 0, …)

• What happens?
Unless MPI_Send/MPI_Recv is buffered

(and this depends on the MPI implementation)
DEADLOCK

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Avoiding deadlock

• We can sometimes re-organise the communications to
avoid deadlock
– First even processes send odd processes receive
– Then odd processes send even processes receive

• But this serialises the communications into two stages
which is inefficient

• Better to use MPI_SendRecv, which combines send and
receive in a single deadlock-free call

• Another good solution is to use non-blocking
communications …

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Communications modes

• The standard MPI_Send and MPI_Receive are blocking
– MPI_Send does not return until it is safe to re-use the send

buffer – this may need to wait until the receive is complete!
– MPI_Receive does not return until the data is ready in the

receive buffer

• MPI provides other modes of send:
– buffered; user-provided buffer space allows send to complete

irrespective of whether a receive has been posted
– synchronous; completion indicates that the receive has started
– ready; send completes because the receive must be posted

MPI_BSend, MPI_SSend, MPI_RSend

• These may be used to ensure deadlock free operation,
but non-blocking communication is much better

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Non-blocking communications I

• A non-blocking send/receive initiates the operation,
but does not complete it

• With suitable hardware the data transfer can proceed
in parallel with local computation

• Users should be aware that it is not safe to re-use
send/receive buffers before completion

• Call provides a request handle
• Operation is completed with a MPI_Wait

MPI_ISend, MPI_IBSend, MPI_IRSend, MPI_ISSend
MPI_IRecv

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Non-blocking communications II

• Example
MPI_ISend (a,1,sendhalodt,north,tag,MPI_Comm_World,sendrq,ierr)
MPI_IRecv (a,1,recvhalodt,south,tag,MPI_Comm_World,recvrq,ierr)
…
…
intervening computation
…
…
MPI_Wait (sendrq,sendstatus,ierr)
MPI_Wait (recvrq,recvstatus,ierr)

Only now can you be sure that the data in a has been sent/received

• This is very highly recommended

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message Passing Interface –
Collectives

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Introduction

• Collective communication involves a group of processes
• MPI provides the following collectives

– Barrier
– Broadcast
– Gather
– Scatter
– AllGather (all processes receive the result)
– AllToAll (complete exchange)
– Reduce (sum, max, min, or user-defined)
– AllReduce (as Reduce but all processes receive result)
– Scan

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Barrier

• Simplest example of a collective operation is
MPI_Barrier

MPI_Barrier (MPI_Comm_World,ierr)

• Operates as a barrier – processes wait here until all of
them have arrived

• Barriers are BAD
• Collective operations must be executed by all processes

in the communicator
• Collective operations are blocking

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Collective examples

• MPI_Broadcast
MPI_Broadcast (buf,count,datatype,root,MPI_Comm_World,ierr)

• MPI_Gather
MPI_Gather (sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,root,MPI_Comm_World,ierr)

• MPI_Reduce
MPI_Reduce (sendbuf,recvbuf,count,datatype,
op,MPI_Comm_World,ierr)

where op is one of MPI_Sum, MPI_Max, MPI_Min, etc

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Exercise 3

• You can find exercise 3 in
/usr/local/scat/parallel-course/ex3/

• This is a very primitive Jacobi iteration to solve the
Laplace equation in two dimensions with finite
differences

• Serial code jacobi_serial.f
• Parallel version jacobi.f

– But the communications is missing!

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Checklist for parallelisation

• Partition the problem domain
– set up new indexes for the bounds of the sub-domain

• Assign sub-domains to processors
• Change loop bounds to run over the local sub-domain

– ensure the owner computes rule is obeyed

• Determine the communications dependencies
– examine the relationship between LHS assigns and RHS

references to non-local data

• Insert communications calls
• Test correctness

– Results should be bit-wise identical with number of processors

• Test performance
– Scaling of performance with number of processors

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Partitioning

12x12 problem size

outer rows/column
are boundary data

1D partitioning in j
for 4 processors

j_last

j_first

j_last
j_first

j_last

j_first

j_last
j_first

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Halo exchange

j_last+1

j_last

j_first

j_first-1

Send from j_last

Receive into j_last+1

Send from j_first

Receive into j_first-1

a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

That’s enough help
Off you go!

• Do the serial and parallel program produce the same
answers?

• Does the parallel program run faster?

• How can you improve its performance?

