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Overview of presentation

• Basic principles of parallel computing

• Basic principles of grid partitioning

• A simple problem – calculating Pi in parallel

• Basic principles of explicit and implicit schemes

• A comparison of typical CFD methods

• Practical example 1 – heat conduction in 1D

• Practical example 2 – the Poisson equation in 2D

• Multiblock, multigrid, and other topics
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Grid partitioning

Brief synopsis

The vast majority of CFD problems are grid-based. To solve these types 
of problems on a machine with more than one processor it is necessary 
to split the problem up into smaller sized problems that will fit within the 
memory limits of the target machine. This is known as “grid partitioning”
but is more often referred to as domain decomposition.

In principle, the programmer has complete control over the grid 
partitioning stage and therefore how the program is distributed to the 
processors. However, the programmer has no control over the 
communication network i.e. the latency and bandwidth of the machine. 
But, the programmer can be aware of any hardware limitations and use 
this information at the partitioning stage.

This course will explain the principles of how to partition a grid and how 
to understand what to look for.
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Basic reasons for parallel computing

There are two main reasons for using parallelism

1) to reduce the computational time

• this is usually for fixed-size problems
e.g. you already have grid independence but need answer faster

2) to increase the accuracy

• this is usually for a fixed-time problem
e.g. you need to achieve grid independence but have time constraints
i.e. industry often driven by overnight solutions.
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Basic principles of parallel computing – programming model

The basic approach to parallelism is the Single Program Multiple Data 
(SPMD) model.

In this model, every processor sees the same program but operates on 
different data.

This is probably the most important model in scientific parallel computing.
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Basic principles of grid partitioning

Computational Fluid Dynamics (CFD) is all about solving the Navier-Stokes
equations.

The Navier-Stokes equations are a coupled set on nonlinear partial differential 
equations (PDEs).

To solve this system of equations, we generally need to discretize the 
governing PDEs onto a computational grid.

To solve this system in parallel, we need to partition the computational grid 
(note - this is often referred to as domain decomposition).
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Examples of typical grids used in CFD

structured multiblockunstructured

NH19 fuselage
figure courtesy of

Barakos and Badcock (Liverpool)
2,226 blocks, over 12M cells

Thermal flow around the 
Beagle 2 lander module
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Basic principles of grid partitioning
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A simple model problem – calculating Pi

( ) ( )
1 1 1

1
2

0 0 0

44 tan
1

x dx dx f x dx
x

π −= = =
+∫ ∫ ∫The starting point is

The approach to solving this type of problem is known as functional
decomposition [1].
1) Chandy and Taylor, 1992, An introduction to parallel programming

To solve this problem, we need to integrate (numerically) the function. We will 
use the Trapezoidal Rule.

Note: area of trapezoid is

where W is the width of the interval and f is evaluated at the midpoint.

( ) ( ) ( )1
1 1/ 22 i i iA W f x f x W f x+ +⎡ ⎤= × + ≈ ×⎣ ⎦
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Graphical illustration of the function

Divide the function into N equal 
strips. The width, W, is simply 1/N
and the area under the integral is:

( ) ( ) ( ) ( )1/ 2 3/ 2 1/ 2 1/ 2
1

....
N

N i
i

A W f x f x f x W f x− −
=

⎡ ⎤= × + + + = ×⎣ ⎦ ∑

x

f(x)

f(x)=4/(1+x2)

0 1
0

4

ii-1 i+1
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Calculating Pi in parallel – some points to note

1) The calculation is like a 1D grid problem (without boundary conditions)

2) The summation does not depend on the order

( ) ( ) ( )
1

1/ 2 1/ 2 1/ 2
1 1,3,5 2,4,6

N N N

i i i
i i i

A W f x W f x f x
−

− − −
= = =

⎡ ⎤
= × = × +⎢ ⎥

⎣ ⎦
∑ ∑ ∑

How do we solve this in parallel?

To start, let’s assume we have p processors, where p = N.



4-12 Jan. 2007
First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 11

Calculating Pi in parallel

x

f(x)

f(x)=4/(1+x2)Assign strip 1 to processor 1,

strip2 to processor 2, etc.

Assume each processor knows its 
value for x

Processor 1 knows

Processor 2 knows

Processor i knows 

( )1 1/ 2A W f x= ×
( )2 3/ 2A W f x= ×

( )1/ 2i iA W f x −= ×

strip i to the i’th processor

Each processor now “owns” a part of the solution. 
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Calculating Pi in parallel

Each processor must now communicate to determine the value of Pi.

Using MPI, this can be done quite efficiently. 

Before doing that, let’s examine some possible ways of calculating the 
value of Pi by communicating each value.

Assume we have 4 processors, each holding a value as in figure below.

1A 2A 3A 4A
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Calculating Pi in parallel – a linear chain

Denote processor 1 as P1 etc. and start by doing the following

( ) ( ) ( ) ( )* * * *
1 1 2 2 1 2 3 3 2 3 4 3 4P A P A A A P A A A P A A→ = + → = + → +

The notation should be read as processor 1 sends to processor 2,
the two values are added, processor 2 sends the result to processor 
3, the two values are added etc.

Some important points to note: 

1) the communication time scales with the number of processors

2) only the final processor (in this case P4) knows the value of Pi.

3) for all processors to know Pi, communication time scales as 2P

Clearly there are better ways to perform the communication step.
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Calculating Pi in parallel – a reduction operation

What if all processors send their data to P1 and the data is added?

( )
( ) ( )

( )

2 2

1 1 2 3 4 3 3

4 4

P A

P A A A A P A

P A

+ + + ←

Some important points to note: 

1) only processor 1 knows the value of Pi

2) communication time considerably reduced

3) the bad news is we have created a major bottleneck
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A simple model problem – calculating Pi in parallel

The best approach is based on the following

( ) ( )
( ) ( )

* *
1 12 1 2 2 12 1 2

* *
3 34 3 4 4 34 3 4

P A A A P A A A

P A A A P A A A

= + = +

= + = +

Here, all processors exchange data concurrently.

The next step is a further exchange

( ) ( )
( ) ( )

* * * *
1 12 34 3 12 34

* * * *
2 12 34 4 12 34

P A A P A A

P A A P A A

+ +

+ +

This is a hypercube summation and is highly efficient – the summation 
is completed after log2p operations. All processors know the answer.
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A simple model problem – calculating Pi in parallel

• In practice, the safest strategy for communicating is as follows:

– If processor number is odd, send data to even processor number
If processor number is even, receive data from odd processor number

• After step is complete, you need to “reverse” the procedure i.e.

– If processor number is even, send data to odd processor number
If processor number is odd, receive data from even processor number

• The commands to do this operation will be covered in detail in the MPI 
course by Dr. Mike Ashworth
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A simple model problem – calculating Pi in parallel

What if p < N?

This is always the case for practical problems. 

We need to distribute the data to get a good load balance.

Let p = 4 and N =  40. Clearly work is balanced if each processor has 10 
strips i.e.

10 20 30 40

1 2 3 4
1 11 21 31

i i i i
i i i i

P A P A P A P A
= = = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

We can now use our favourite summation routine to find the answer.

The foregoing is really the basis for grid partitioning.
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Basic principles of explicit and implicit schemes
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Basic principles of explicit and implicit schemes

Consider a grid of N + 1 points

i i+1i-1

i+1/2i-1/2

0 N

h

The numerical approaches to solving grid type problems are generally based 
on explicit or implicit solvers. The methods can be described as :

( )1 ,n n n nf f h f t y+ = +Explicit

Implicit ( )1 1 1,n n n nf f h f t y+ + += +

Explicit schemes depend on known data whilst implicit schemes require the 
solution of an equation because more than one unknown appears.
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Basic principles of explicit and implicit schemes

( ) ( )
2

2 0L g x
x
φφ ∂

= − =
∂

Consider the 1D Poisson model equation

i+1/2i-1/2

i i+1i-10 N

n

n+1

known

unknown

Explicit

e.g. Jacobi, Runge-Kutta

( )1n nfφ φ+ = Implicit

e.g. Crank-Nicolson, Stone

( )1 1n nfφ φ+ +=
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Finite difference approximation to model problem

( )
2

2 g x
x
φ∂
=

∂
Consider model equation

i i+1i-1

i+1/2i-1/2

0 N

h

( ) ( )0 10 1φ φ φ φ= =

{ }: 0 1h x xΩ = ≤ ≤

Subject to boundary conditions

in the domain

In the above, h = 1/N and xi = ih and right hand side values are known.

The ODE is now replaced by a finite difference approximation
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Finite difference approximation to model problem

The finite difference approximation at the i’th grid point is given by

2
1 1

2 2

2i i i

x h
φ φ φφ − +− +∂

≈
∂

In 2D, the finite difference approximation at the ij’th grid point is given by

2 2
1, , 1, , 1 , , 1

2 2 2 2

2 2i j i j i j i j i j i j

x yx y h h
φ φ φ φ φ φφ φ − + − +− + − +∂ ∂

+ ≈ +
∂ ∂

These approximations are 2nd order accurate. Higher order schemes are 
clearly possible. We will now look at solving these problems in parallel.



4-12 Jan. 2007
First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 23

Solution algorithms to model problem

The first thing to be aware of is that the best sequential algorithm may not be 
the best parallel algorithm. 

For elliptic problems, like Poisson’s equation, there are very fast and efficient 
direct methods. These methods, e.g. Gaussian elimination, solve the system 
of equations exactly (to machine accuracy) in a finite number of steps. There 
are also very efficient Fast Fourier Transform (FFT) methods and cyclic 
reduction. Parallel versions of such schemes already exist but they are often 
for specialised problems. For example, Direct Numerical Simulation (DNS) 
solves the Navier-Stokes equations without approximations and resolves all 
turbulent length scales. The problems are often assumed to be periodic and 
the FFT algorithm is ideal. 



4-12 Jan. 2007
First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 24

Solution algorithms to model problem

Although direct methods can be considered “optimal”, they suffer from a 
number of important limitations:

A rectangular domain is required;

The size of the coefficient matrix;

A large storage requirement;

Boundary conditions - in practice, very few problems are periodic in all spatial 
directions. Most problems have solid walls and complex geometries making 
the FFT and direct methods difficult algorithms to use. 

We will therefore focus on iterative methods.
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Solution algorithms to 1D model problem – Jacobi iteration

Jacobi’s method is explicit. For the 1D problem with g = 0 it can be written as

1
1 1

1
2

k k k
i i iφ φ φ+

− +⎡ ⎤= +⎣ ⎦

For the 2D problem with g = 0 it can be written as

( ) ( )1 2
, 1, 1, , 1 , 12

2 2 2

1
2 1

/

k k k k k
i j i j i j i j i j

x yh h

φ φ φ β φ φ
β

β

+
− + − +

⎡ ⎤= + + +⎣ ⎦+

=
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Jacobi’s method in parallel

How does this problem differ from the functional decomposition?

i i+1i-1

i+1/2i-1/2

0 N

h

In the case of functional decomposition all data was local and communication 
was only needed to get the complete answer. However, we now have
derivatives to calculate and this requires data from neighbouring points.



4-12 Jan. 2007
First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 27

Jacobi’s method in parallel

Consider our model problem grid being partitioned into two and each domain 
containing N/2 grid points:

partition point0 N

Grid points on processor 1

i i+1i-10 N/2

Grid points on processor 2

0 N/2i i+1i-1
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Jacobi’s method in parallel

To save storage, each processor contains arrays with size N/p and NOT N. In 
this case, p = 2.

What about boundaries? Processor 1 knows about x = 0 but no longer knows 
anything about x = 1 (i.e. at N). Similarly, processor 1 doesn’t know anything 
about the boundary at x = 0 (remember, x = 0 on processor 2 actually 
corresponds to the physical location x = N/2*h)

i i+1i-10 N/2
Grid points on processor 1

0 N/2i i+1i-1

Grid points on processor 2
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Jacobi’s method in parallel

What happens at the interface? Recall, we have to solve

1
1 1

1
2

k k k
i i iφ φ φ+

− +⎡ ⎤= +⎣ ⎦

Grid points on processor 2

2 310 4

Grid points on processor 1

2 310 4

7 865 9

2 310 4

global index

local index

local index
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Jacobi’s method in parallel – solving the interface

On processor 1 and 2 (using global notation) we have to solve
1

5 4 6
1
2

k k kφ φ φ+ ⎡ ⎤= +⎣ ⎦
1

4 3 5
1
2

k k kφ φ φ+ ⎡ ⎤= +⎣ ⎦

This is achieved by introducing a halo region.

Grid points on processor 2
local index

local index

Grid points on processor 1

global index

2 310 4-1 0

7 865 94

3 421 50

3 421 50
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The interface in 2D for a single block grid partition
P

rocessor 2

Halo or 
ghost cell

P
ro

ce
ss

or
 1

Halo or 
ghost cell
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Jacobi’s method in parallel – solving the interface

The halo region allows us to calculate derivatives at the partition interface.

The number of halo points required usually depends upon the order of the 
derivative i.e. second order accuracy will require 2 halo points for the 
computational stencil i.e. consider a simple upwinding scheme 

1 2i i i
f af bf cf
x − −

∂
≈ + +

∂
The derivative requires information from two grid points away. If higher order 
accuracy is required, more halo points can be added. 

As with the functional decomposition, the “missing” data is transferred using 
communication primitives e.g. MPI_SEND/MPI_RECV, which will be 
explained in detail in the MPI course. Note, we clearly have to send just the 
required data and place it in the appropriate array location.
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Jacobi’s method in parallel
If we have more than two processors, only the processors related to the 
physical boundary will have one interface. All other processors will have two 
partition interfaces and a halo region at each end.

In 2D, there could be a mix 2, 3 and 4 interface regions that will depend upon 
the partitioning strategy employed. In figure, procs 1, 3, 7, & 9 have two 
interfaces, procs 2, 4, 6, 8 have three, and proc 5 has four. 3D is similar.

1 2 3

654

7 8 9
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Jacobi’s method in parallel – slight recap

We can now, in principle, partition our computational grid into any number of 
separate domains (depending on how many processors we have, the problem 
size etc.). The solution will be converged when we achieve some specified 
tolerance e.g. 

1
1

1

N
k k
i i

i
ε φ φ

−
+

=

= −∑

Other criteria are also possible, such as L2 norm.

Note: analogous to the functional approach, each processor only has a partial 
residual. A global residual is needed and this is done using a global sum.

Some questions we still need to answer:

How many iterations will it take to converge?

Is the number of iterations affected by the partitioning?
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Jacobi’s method in parallel

How many iterations will it take to converge?

This will depend on the problem and the grid size.

In fact, Jacobi’s method is a poor algorithm and it frequently fails to converge 
because it is not good at removing the low frequency errors. 

Is the number of iterations affected by the partitioning?

As Jacobi’s method is explicit there is NO dependence on the partitioning. It 
will converge in the same number of iterations. If it doesn’t, you’ve done 
something wrong! 

This makes it an ideal test case for developing your parallel computing skills. 
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A slight digression - measuring parallel performance

Let’s assume we have our parallel Jacobi method working. We need to get 
some idea of how the parallel version performs. This is measured by the 
speed-up which is defined as

where t1 is the computational time on one processor and tp is the time on p

processors. 

The parallel execution time depends on two factors – the processor speed 
(which will be the same for both single and multi-processor runs)* and the 
communication performance. 

1
p

p

tS
t

=

* processor performance is strongly affected by cache utilisation. 
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Communication performance

There are two aspects to communication performance

0 /commT t N M= +

where N is the message length, t0 is the start-up time (or latency), and M is 
the bandwidth. The user can only affect the message size (i.e. packing data 
together) – the latency and bandwidth are a property of the interconnect.

The latency will dominate for short messages e.g. global residuals.

The bandwidth will dominate for long messages.
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Communication performance – graphical plot

0 /commT t N M= +
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A slight digression - measuring parallel performance

The speed-up is therefore

( )
1 1

1 1/ / 1p
p comm comm

t t pS
t T t p p T t

= = =
+ +

To obtain a linear speed-up, the communication time must be << computation 
time. 

If the problem size is fixed, the communication time will eventually start to 
dominate. This is known as Amdahl’s law.

If the problem size is scaled with the number of processors, the scaling is 
usually very good. This is known as Gustafson’s law.



4-12 Jan. 2007
First Latin American SCAT Workshop

Universidad T. F. Santa Maria, Valparaiso, Chile 40

Alternative methods in parallel – Point Gauss-Seidel

Let’s now consider the Point Gauss-Seidel iteration method.

In this approach, the current values of Φ are used as soon as they are 
available. The algorithm for the model problem looks like:

Consider the grid location (1,1) followed by (2,1):

( ) ( )1 1 2 1
, 1, 1, , 1 , 12

1
2 1

k k k k k
i j i j i j i j i jφ φ φ β φ φ

β
+ + +

− + − +
⎡ ⎤= + + +⎢ ⎥⎣ ⎦+

( ) ( )1 1 2 1
1,1 0,1 2,1 1,0 1,22

1
2 1

k k k k kφ φ φ β φ φ
β

+ + +⎡ ⎤= + + +⎢ ⎥⎣ ⎦+

( ) ( )1 1 2 1
2,1 1,1 3,1 2,0 2,22

1
2 1

k k k k kφ φ φ β φ φ
β

+ + +⎡ ⎤= + + +⎢ ⎥⎣ ⎦+
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Alternative methods in parallel – Point Gauss-Seidel

Unlike Jacobi’s method, the Point Gauss-Seidel is recursive. 

What does this mean in parallel? Consider interface region along j = 1.

Grid points on processor 2 j=1

2 310 4

Grid points on processor 1 j=1

2 310 4

7 865 9

2 310 4

global index

local index

local index

( ) ( )1 1 2 1
5,1 4,1 6,1 4,0 4,22

1
2 1

k k k kφ φ φ β φ φ
β

+ + + k⎡ ⎤= + + +⎢ ⎥⎣ ⎦+

On proc 2, the solution requires the value of (4,1) at iteration level k+1.
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Alternative methods in parallel – Point Gauss-Seidel

In parallel, all processors start solving the problem at the same time.

For the Point Gauss-Seidel method on 2 processors, this means:

Processor 1 has the correct value at k+1 (i.e. same as sequential version)

Processor 2 starts with the “wrong” value but after the interface data is 
transferred, it has a better estimate. Processor 2 therefore lags processor 1 in 
the solution. 

Unlike Jacobi’s method, the number of iterations for the Point Gauss-Seidel 
method to converge will change with the number of processors! 

( ) ( )1 1 2 1
2,1 1,1 3,1 2,0 2,22

1
2 1

k k k k kφ φ φ β φ φ
β

+ + +⎡ ⎤= + + +⎢ ⎥⎣ ⎦+
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Alternative methods in parallel – Point Gauss-Seidel
What other technique can be used?

Consider splitting a 2D problem for 4 processors. Values (boundary points) 
are known along global locations i = 0, j = 0, i = N, j = M. 

We could therefore sweep left to right on procs 1 & 3 and right to left on 2 & 4.

1

4

2

3
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Alternative methods in parallel – Point Gauss-Seidel
Although offering some attractive features (probably improved convergence), 
is has several disadvantages. It will be more awkward to program and will not 
scale to many processors. 

1

4

2

3
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The Point Gauss-Seidel method in parallel

In practice, the Point Gauss-Seidel will converge but it generally requires 
more iterations than the sequential version. As a rule, expect about 10% more 
iterations.

What about other related methods? In principle, all other implicit schemes will 
exhibit similar trends so the Gauss-Seidel method provides an ideal prototype.
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Alternative implicit methods

Line Gauss-Seidel iteration method.

( ) ( )1 2 1 1 2 1
1, , 1, , 1 , 12 1k k k k k

i j i j i j i j i jφ β φ φ β φ φ+ + + +
− + − +

⎡ ⎤− + + = − +⎢ ⎥⎣ ⎦
This results in a tridiagonal matrix to solve.

Point Successive Over-Relaxation method.

( ) ( ) ( )1 1 2 1
, , 1, 1, , 1 , 12

1
2 1

k k k k k k
i j i j i j i j i j i j

ωφ ω φ φ φ β φ φ
β

+ + +
− + − +

⎡ ⎤= − + + + +⎣ ⎦+

When omega = 1, the Point Gauss-Seidel method is recovered. The trick is to 
find the “optimum” value of omega. 

There are many variants on the above, including Alternating Direction Implicit 
(ADI), “red-black” Gauss-Seidel,…….
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Conjugate Gradient methods

• There are many flavours of conjugate gradient methods but the system 
we are looking at is symmetric positive definite. The basic method is 
ideal for our purpose. 

• In a similar manner to the various iterative schemes, understanding 
how the basic conjugate gradient scheme works in parallel means that 
other conjugate gradients methods can be understood e.g. conjugate 
gradient squared.

• We now re-write our system of equations in matrix form i.e. Ax = b
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Conjugate Gradient methods – matrix form

2
1,1 1,1

2
2,1 2,1

2
3,1 3,1

2
4,1 4,1

2
1,2 1,2

2
2,2 2,2

2
3,2 3,2

2
4,2 4,2

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0

0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

b
b
b
b
b
b
b
b

φα β
φα β
φα β
φα β
φβ α
φβ α
φβ α
φβ α

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥⎦

( )22 1α β= − +

Note, full system not shown! 
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Conjugate Gradient methods – basic pseudocode

( )

( )

( )

0 0 0

1 1

0 0 0

0 0 0

1 1

1 1

1 2
1

1 1 1 1 1 1

0;
0; 0

solve from
,

For 0,1,2,.......

; ;
,

;
If stop

; , ; /
end

i
i i i i i i i

i i

i i i i i i i i

i

i i i i i i i i

x r b Ax
p

w Kw r
r w
i

p w p q Ap
p q

x x p r r q
r

w K r r w

β

ρ

ρ
β α

α α

ε

ρ β ρ ρ

− −

− −

+ +

+

−
+ + + + + +

= = −
= =

=

=

=

= + = =

= + = −

<

= = =

In the above, K is a preconditioning matrix and (…,…) are dot 
product operations.
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Conjugate Gradient methods – basic pseudocode

For convenience, the preconditioning matrix is set to the identity 
matrix. 

There are several dot product operations and a global residual test 
for convergence. This will test the latency of the network. 

Data will need to be transferred at the interface regions and will test 
the bandwidth of the network.

When K = I, the parallel algorithm performs analogously to the 
Jacobi explicit scheme i.e. the number of iterations required to 
converge does not depend on the partitioning.

In practice, choosing a good preconditioner is needed to obtain good 
convergence and this remains an active area of research. For many 
CFD type applications, incomplete LU factorisation works very well.
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A model test problem
2 2

2 2 0T T
x y

∂ ∂
+ =

∂ ∂
The governing equation for 2D heat conduction is

1, 1
1

, ,
1, 1

0.01
N M

k k
i j i j

i j
T Tε

− −
+

= =

= − =∑The convergence criteria was set to

The number of grid points used was 21 in the x-direction and 41 in the 
y-direction. The computational domain is 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2 with boundary 
conditions: T(x,0) = T1 and T(0,y) = T(1,y) = T(x,2) = 0, with T1 = 100.

( )
( )( )
( )1

1,3,5

sinh /1, 2 sin
sinh /n

n H y L n xT x y T
n n H L L

π π
π π

∞

=

⎡ ⎤−⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑

For this problem, L = 1 and H = 2.
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Iteration count for Poisson equation in parallel

Method NPX NPY NP Iterations Time (s)
J 1 1 1 6949 31.74

GS 1 1 1 3642 19.36
CG 1 1 1 150 2.90
J 2 1 2 6949 40.72

GS 2 1 2 3726 20.10
CG 2 1 2 150 2.41
J 1 2 2 6949 25.85

GS 1 2 2 3680 15.57
CG 1 2 2 150 2.63
J 2 2 4 6949 29.46

GS 2 2 4 3763 17.18
CG 2 2 4 150 2.34
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Multiblock in parallel

structured multiblock
Many advanced CFD codes use multiblock to 
model complex geometries. 

However, this approach was developed for 
sequential execution.

What happens in parallel?

From the previous model problems it should 
be clear that the convergence properties are 
going to be affected and the number of 
iterations or time-steps will change.

NH19 fuselage
figure courtesy of

Barakos and Badcock (Liverpool)
2,226 blocks, over 12M cells
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What about unstructured problems?

Unstructured grids have many advantages 
e.g. ability to handle extremely complex 
geometries, relatively easy to introduce grid 
refinement/adaptation, easier to couple with 
structural problems.

However, partitioning is not easy!

Fortunately there is a very efficient software 
package (Metis) that will do this for you.

For very, very large grids e.g. 120M+ nodes, 
there is a parallel version!

The major issues are related to load 
balancing, efficient cpu utilisation (see 
PETSc) presentation, ……. Unstructured grid around the 

Beagle 2 lander module
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Multigrid methods

Multigrid principle: 
initial mesh → create successive meshes (coarse → fine, fine → coarse)

Structured grids: relatively straightforward

Unstructured Grids: much more challenging
Nested (derived from initial mesh) and non-nested methods
Agglomeration (coarse mesh level derived by merging cells)

Partitioning unstructured meshes: this was a major bottleneck and 
suffered severely from disconnected domains. The problem was 
solved in early 90s (H. Simon). Today, partitioning unstructured grids 
is fairly routine and the best package available is METIS (free!)
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Multigrid: effect on communications

Latency of system
increasingly important
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Finite Volume Multigrid
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Agglomeration multigrid of M6 wing

The figure shows the fine mesh (a) and its dual mesh (b)\(which shows 
the communication path). The final figure shows the next level using an 
agglomeration technique.

a b c
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Grand challenges of the 1990s

Simulation of the landing for a V/STOL aircraft including the prediction of:

• Forces

• Thermal loads (on aircraft and landing surface)

• Propulsion system interaction etc.

Goal: turn-around time low enough to enable design studies.
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Challenges for 2000 and beyond

A recent simulation of a V/STOL aircraft in hover using a commercial 
CFD code (CFD-ACE+). These calculations are now within the grasp of 
engineers.
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Future challenges: helicopter simulation

Helicopter simulations 
are among the most 
challenging problems 
facing CFD. 

Recent work on HPCx
has required 32M grid 
points around the rotor 
blade to capture the tip 
vortices.

Simulating tThe landing 
of a H-60 helicopter on a 
ship may have to wait!
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Future challenges: moving/overlapping grids

This type of grid would be used for very complex intersections or for 
moving bodies but remain difficult problems to solve in parallel.
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