
a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

AlfaAlfa--SCATSCAT
Scientific Computing Advanced TrainingScientific Computing Advanced Training

Concepts in Parallel 
Computing

Dr Mike Ashworth
Computational Science & Engineering Dept

CCLRC Daresbury Laboratory &
HPCx Terascaling Team

impaimpa



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Outline

PART I
• Serial Computing
• Parallel Computing – The Hardware View

– different architectures

• Parallel Computing – The Logical View
– architecture independent views
– programming environments

• Parallel Computing – Performance
– how do we measure performance and parallel scaling?

PART II
• Parallel Computing – Overheads

– why don’t we get perfect scaling?

• Parallel Computing – Design
– how does knowing all the above help us write a parallel code?



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Disclaimer

• Parallel computing is usually the subject of a course 
running over (at least) one semester

• This will be a very broad overview of the subject in two 
lectures

I will go quickly …
… there will be material missing …

… but hopefully it will give you a useful introduction

• You should follow up with in-depth courses or self-
study



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Serial Computing



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Serial Computing I

• The elements of conventional architectures which limit 
the performance of scientific computing are the 
processor (CPU), memory system, and the datapath

CPU

Registers
Integer units

Floating point
units

Memory

Disc

Network 
connections

datapath



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Serial Computing II

• Different applications have different requirements 
– data-intensive applications require high data throughput
– server applications require high data network bandwidth
– scientific applications require high processing and memory 

system performance

• For scientific computing the three components, 
processor, memory system, and the datapath, each 
present significant performance bottlenecks

• It is important to understand each of these 
performance bottlenecks

• Parallel computing addresses each of these components 
in significant ways

• Parallelism is present at many difference levels 
(granularity: fine grain -> coarse grain)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Microprocessor Clock Speeds

• Microprocessor clock speeds have increased dramatically 
(three orders of magnitude in two decades)

Due to escalating 
power consumption 
“The Power Wall”

This has started to slow in the last few years



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Moore’s Law

• Higher levels of device integration have made available 
increasing numbers of transistors (Moore’s Law)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Chip “Real Estate”

• The question of how best to utilize more transistors is 
an important one

• Up until recently processors use these resources in
– multiple functional units (increased fine grain parallelism)
– larger on-chip memory caches for instructions and data

• Now we are seeing “multi-core” chips with multiple 
CPUs per chip
– dual-core now common
– 4-way and 8-way imminent



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallelism within the CPU

• All processors now use parallelism within the CPU
• Pipelined functional units allow repeated operations to 

be streamed like a production line
• Additional hardware allows the execution of multiple 

instructions in the same cycle
• The precise manner in which instructions are selected 

and executed provides for diversity in architectures
– vector processing
– pipelining
– super-pipelining (pipelining with more stages)
– superscalar (instruction-level parallelism)
– VLIW (complex compile-time analysis) - superceded
– out-of-order execution
– speculative execution and branch prediction



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Multi-processor parallelism

• But we are interested in harnessing multiple 
processors to increase the performance of scientific 
applications:

1. Reduce the time to solution for existing problems
2. Utilise large-memories for large-scale problems which 

can not be addressed on single-processor systems



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallel Computing –
The Hardware View



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Flynn’s Taxonomy

Old (1966) classification of hardware according to 
instruction streams and data streams:

• SISD – Single Instruction Single Data
– this is our traditional familiar serial processor

• SIMD – Single Instruction Multiple Data
– array processors executing a single instruction stream 

simultaneously in lock-step on different data (successful in the 
past, not common now)

• MISD – Multiple Instruction Single Data
– redundant parallelism, as for example on airplanes that need to 

have several backup systems in case one fails

• MIMD – Multiple Instruction Multiple Data
– most flexible, allows for different data to be handled in 

different ways – most modern machines are of this type



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

CPU 0 CPU 1 CPU 2 CPU 3

Memory

Shared Memory

Found in a dual-core PC, and also some mid-range servers. 
No longer used at the high-end as contention in the 
shared memory limits the scalability

Sometimes referred to as Symmetric-Multi-Processor (SMP)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Distributed Memory

CPU 0 CPU 1 CPU 2 CPU 3

Mem Mem Mem Mem

Interconnect

Found everywhere from a cluster of PCs to purpose-built 
high-end systems e.g. Cray XT3. 

Performance and scalability depends on the interconnect 
of which there are many different types.



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

CPU 0 CPU 1 CPU 2 CPU 3

Memory Memory

Clustered Shared Memory Nodes

Interconnect

Most high-end systems are now like this e.g. Cray XT4, IBM 
POWER5 cluster. Also many mid-range clusters with 
dual-core nodes.

Performance and scalability depends on the interconnect.



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Interconnects

• Static or Dynamic
– Static: point-to-point links, does not scale
– Switched networks, cost grows as the square of the number of ports

• Network interface
– I/O bus: loosely-coupled cluster
– Memory bus: tightly-coupled multi-processor, FASTER

• Network Architectures
– Bus: poor scalability, but performance improved with local cache
– Crossbar: full connectivity, expensive to scale to large numbers
– Multistage: compromise solution

• Network Topologies
– star, linear array, hypercube, mesh (2D, 3D, toroidal), tree (fat)
– some systems have multiple networks (e.g. IBM Blue Gene)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Example – Cray XT3



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallel Computing –
The Logical View



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Shared Address Space

All instances of a program can access the same data. 
Need to prevent conflict (cache coherency).

Trivial on shared-memory hardware.
Can be implemented in distributed-memory hardware 

(needs hardware support e.g. processor id in address).

Address 0000

.

.

.

.

Address FFFF

Task 0

Task 1

Task 2

Task 3



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message Passing

Each instance of a program has its own address space. 
Message passing library calls allow data transfer.

Clearly a good match for distributed-memory hardware
Also very efficient on shared-memory hardware

Address 0000

.

.

.

Address FFFF

Task 0
Address 0000

.

.

.

Address FFFF

Task 1
Address 0000

.

.

.

Address FFFF

Task 2

send

send

receive

receive



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Expressions of parallelism I

TRIVIAL PARALLELISM
• Run N copies of the serial code at the same time with 

different input parameters 
– e.g. ensemble forecasting in numerical weather prediction

• Minimal communications leads to high efficiency
• Sometimes called “embarrassingly parallel” but nothing 

wrong with this method
• If the scientific problem lends itself to this approach it 

is very efficient



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Expressions of parallelism II

TASK PARALLELISM
• You could write 1024 different programs - NIGHTMARE!
• Maybe a small number of different programs which are 

assigned different numbers of processors
– e.g. a pipeline in image processing

• Startup and shutdown costs associated with pipeline
• Applicable to limited class of problem
• Difficult to load balance



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Expressions of parallelism III

DATA PARALLELISM
a.k.a. SPMD – Single-Program Multiple-Data 

• Every processor runs the same executable but works 
with different data

• Message passing environment gives each process its 
rank

• Load balancing controlled by partitioning of data 
– e.g. in a grid-based problem give each processor the same 

number of points

• Most common approach to parallelism



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Programming Environments I

• Serial language with message passing library
– Fortran – traditional, still most common for scientific codes, 

new standards (F90, F2003, F2005) have greatly improved the 
robustness, modularity, even some object-oriented constructs

– C – traditional, popular for systems programming, less common 
for scientific codes 

– C++ - extends C as a full object-oriented language, can lead to 
performance problems for numerical scientific codes

– Java – robust, object-oriented, portable but inherent problems 
with optimisation for numerical codes

– Message Passing Interface – de facto standard very commonly 
used with interfaces to Fortran and C (and Java?)

“The last decent thing written in C was 
Schubert's 9th Symphony” -- Anon



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Programming Environments II

• Parallel languages which extend a serial language
– Co-array Fortran, Unified Parallel C, Titanium (Java)
– introduce an elegance that you can never achieve without 

changes to serial languages
– not in common use so demands new code written from scratch 

(as opposed to extending applications which already exist) 
– difficult to find compilers, especially a good one, for a range of 

platforms
– performance is not proven

• New parallel languages
– Chapel (Cray), X10 (IBM), Fortress (Sun)
– Funded through the DARPA HPCS program
– Research area which may achieve good performance and 

become popular in 5-10 years time



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallel Computing –
Performance



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Expectations

• It is important to understand the performance issues 
before we start designing and writing a program 

• Faster results
– We hope that with P CPUs we can solve problems (almost) P 

times quicker

• Larger Problems
– Typically parallel machines have lots of memory so can do 

bigger problems
• e.g. even a 32 CPU system with 2 Gigabyte per processor 

has 64 GB: a lot more memory than your desktop
• a BIG machine with over 1000 processors will have over a 

Terabyte of memory



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Speed-Up

• Speed-up is used to compare the performance of the 
same code on the same machine with different
numbers of processors

• Relative speed-up is how much faster your program 
runs on P processors relative to 1 processor

Sp = t1 / tp

• Absolute speed-up is how much faster your program 
runs relative to THE BEST SERIAL IMPLEMENTATION
– Sometimes these are the same. Often there is little difference. 

Sometimes the difference can be quite marked
• Sometimes the best serial algorithm is not the best for 

parallel machines
• Sometimes the best parallel algorithm is not the best for 

serial machines



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Speed-Up of CRYSTAL on HPCx

0

256

512

768

1024

0 256 512 768 1024

Number of Processors

Sp
ee

d-
up

ideal

CRYSTAL

700x speed-up on 
1024 processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Efficiency

• The percentage of ideal speed-up obtained allows us 
define the Parallel Efficiency …

Effp = t1 / P.tp

• As with speed-up, with efficiency we have lost 
information about the actual run-time

• Never use to compare different machines
• Never use to compare different algorithms
• It is however a useful measure to see how well a code 

is scaling



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Efficiency of CRYSTAL on HPCx

0

0.2

0.4

0.6

0.8

1

0 256 512 768 1024

Number of Processors

Ef
fic

ie
nc

y

ideal

CRYSTAL

68% efficiency on 
1024 processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Demonstrating Performance

• Plot absolute time in seconds (wall-clock time)
– Perfect behaviour is a reciprocal curve – difficult to see 

deviations from perfect behaviour at high P

• Plot absolute time as log-log
– Everything looks like a straight line

• Best of all is to use performance …
Performance = constant / time

• Perfect behaviour is a straight line so easy to see 
deviations from perfect behaviour

• If the constant relates to the amount of work this can 
be related to something meaningful
– e.g. model days per day in Numerical Weather Prediction
– e.g. iterations per second in an iterative method



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

POLCOMS example of scaling

POLCOMS MRCS

0

10

20

30

40

50

0 64 128 192 256 320 384 448 512
Number of processors

Pe
rf

or
m

an
ce

 (1
00

0 
m

od
e

da
ys

/d
ay

)

Cray XT3
Cray XD1
SGI Altix 1.5GHz
SGI Altix 1.3GHz
IBM p5-575
SCARF
Liquid IQ
NW-Grid



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

How To Measure Scaling

STRONG SCALING
• Keep the problem size the same as you increase the 

number of processors
• Problem size per processor decreases, possibly to the 

point where there is very little work per proc
WEAK SCALING

• Scale the problem size as you increase the number of 
processors

• Problem size per processor stays the same
Good WEAK SCALING 

is easier to achieve than 
good STRONG SCALING



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)

Actually the CRYSTAL example is very good
– Sometimes your program gets SLOWER with more 

processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

PART II



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallel Computing –
Overheads



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Limited Concurrency

• The number of tasks that can be executed in parallel is 
called the degree of concurrency

• The degree of concurrency is determined by the size of 
the dataset and the way it is partitioned
– E.g. if a code only partitions data in one-dimension the 

maximum number of tasks will be the number of data points in 
that dimension. This limitation could be lifted by implementing 
a two-dimensional partitioning

• The degree of concurrency increases as the partitioning 
becomes finer in granularity and vice versa

• We will look at this further when we look at designing a 
parallel program



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Remaining Serial Code

If your program on one processor runs for f % of the time in perfectly 
parallel code, so it takes (1-f) % in serial. 

So on P processors it runs for f/P % of the time doing work in parallel, 
but still (1-f) % in serial execution. 

The speed up is therefore

Speed up = 1  /  ( ( 1 – f ) + f / P )

This is known as Amdahl’s law - it is somewhat scary !
– On a infinite number of processors the speed-up is 1/(1-f), so 

even if your program is running 90% parallel the best speed up 
you can EVER get is 10 !

– The CRYSTAL results presented earlier when fitted to Amdahl’s 
law give f=99.95%



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

0

8

16

24

32

0 8 16 24 32
Number of Processors

Sp
ee

d-
U

p
f=100%
f=99.9%
f=99.0%
f=95.0%
f=90.0%

Amdahl’s Law



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Is It Really That Bad ?

• Amdahl’s Law assumes a fixed size problem
• f is usually a function of the problem being addressed
• In many problems the portion of the code that has been 

parallelised depends strongly on the problem size in 
some way (e.g. N3) while the serial portion scales much 
less strongly
– Gustavson’s Law

Parallel Computing Is Best 
For Large Problems

• Both Amdahl and Gustafson only consider remaining 
serial code



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Speed Up Curves for POLCOMS

0

20

40

60

80

100

120

140

0 128 256 384 512 640 768 896 1024

Number of processors

Pe
rf

or
m

an
ce

 (M
 g

rid
-p

oi
nt

s-
tim

es
te

ps
/s

ec
) Ideal IBM

1 km IBM
2 km IBM
3 km IBM
6 km IBM
12 km IBM



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Load Imbalance I

• Speed of a parallel program depends on the speed of 
the slowest processor; the one with most work

sumi=1,N ( timei ) / N
Load balance = <   1

maxi=1,N ( timei )

• Simple multiplier of the time
Actual time = Load balance * Ideal time

• Can affect the scaling as load balance generally 
worsens with larger numbers of processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Load Imbalance II

• For grid-based simulations it is usual to partition the 
grid into equal numbers of grid points
– assumes work is proportional to number of grid points

• Reality is more complex:
– variations across the grid e.g. land/sea, night/day
– additional/reduced computation at the domain boundaries
– communication imbalance
– input/output e.g. gather results onto one processor for 

output



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message passing I

Point-to-point communications
• Latency-Bandwidth model

t = L + n/B
– time, t, for message of length n bytes
– depends on Latency, L, and Bandwidth, B

• Codes with many short messages are Latency
dominated, those with long messages are Bandwidth
limited

• Latency & Bandwidth are dependent on hardware
– low latency is particularly hard (expensive) to achieve
– latency also affected by software layers
– Beware manufacturers hardware figures – you are unlikely to 

achieve this in practice!
– Intel MPI Benchmarks 



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Measurement of Bandwidth

PingPong - Bandwidth

0

500

1000

1500

2000

1 100 10000 1000000
Message Length

B
an

dw
ith

 (M
B

/s
) IBM p5-575

Cray XT3



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Measurement of Latency

PingPong - Latency

0

5

10

15

20

1 10 100 1000 10000

Message Length

Ti
m

e 
(u

s)

IBM p5-575
Cray XT3



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Message passing II

Global communications
• Operations like broadcast, global sum, global max, 

gather/scatter, etc.
• Often implemented as a tree algorithm

– need log P stages to reach all P processors

• Also Latency dominated for small data sizes
• Can be made “SMP-aware” for clusters of SMPs

– first do global op within the SMP node, making use of fast 
shared memory communications

– then go across the network using only one link per SMP node



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Effect of comms on scaling

0

20

40

60

80

100

0 256 512 768 1024

Number of Processors

Sp
ee

d-
up

pure Amdahl 99% parallel

Amdahl plus comms

Serial code limits 
speed-up as you add 

more processors
Comms can slow 
you down as you 

add more processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Memory and Cache Issues

• Access to caches and to main memory can change as we 
increase the number of processors and therefore affect 
the scaling

• One common effect is 
SUPER-LINEAR SCALING

• On larger numbers of processors the problem size on 
EACH processor is smaller, fits better into cache and 
runs faster

• Result:
Speed-up > 1



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Hindrances to Perfect Scaling

Why Don’t We Get Perfect Scaling?
• Limited Concurrency in the problem
• Remaining Serial code (other processors idle)
• Load Imbalance (those with less work have to wait)
• Message Passing (communications takes time)
• Memory and cache issues
• Other shared resources (e.g. input/output)



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

POLCOMS with full output



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallel Program Design



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Parallel program design

• We have seen a variety of programming models
• The most common – suitable for most applications and 

efficient on most hardware – is …

Single Program Multiple Data

Data parallelism

Serial language (Fortran or C) + MPI

• Within this model the crucial design decision is 
how to partition the data

it affects load balance, communications, serial parts etc.



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Task farm I

• Data is divided into small sections, tasks, which can be 
worked on independently

• More tasks than processors
• Each processor is given a task to work on, and sends back 

results when finished, then given another task
• Usually a master processor which sends and receives 

tasks, plus N-1 worker processors
• No communication between workers – tasks are 

independent – major restriction
• Self load balancing – as soon as a worker runs out of work 

it is given more – only imbalance is when they finish
• Master can become a communications bottleneck



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Task farm II



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Trivial task farm

• Task farm approach often used to implement trivial 
parallelism

• Start up one task farm rather than a large number of 
processors

• Same number of tasks as processors
• Master passes out initial conditions to workers and then 

starts work on a task as well



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Buffered task farm I

• We can help to reduce the communications overhead 
by ensuring that workers have more work to do while 
they are waiting for a response from the master

• Initially send them two pieces of work
• The second is queued in a buffer
• Start with the buffered task as soon as the first is 

finished
• New task from master replaces the buffered task



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Buffered task farm II



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Data partitioning I

• Partition the problem domain into sub-domains
• Distribute sub-domains among processors

– Usually one per processor
– Sometimes more than one per processor but usually an 

unnecessary complication 

• Aim to ensure that data is distributed as evenly as 
possible between the processors
– If work is proportional to the number of grid points, 

distributing the grid points evenly gives a good load balance
– However, may need to look also at the communications load 

balance

• Also aim to minimise the communications
– E.g. minimising the number of cut edges in a FE mesh

• Owner computes new values, boundary exchange to 
update halo data …



Regular partitioning

Regular 
Partitioning



Recursive partitioning

Recursive 
Partitioning



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Boundary exchange I

• White – sub-domain
• Blue - halo
• Halo width depends on 

accuracy of the scheme
• Shown here in 2D -

extends to 3D
• Compute ~ N3/P - volume
• Comms ~ N/P1/3 - surface
• Comms becomes more 

important as P increases

• 8 directions with inefficient single-point corner messages –
but the recursive partitioning shown before improves this



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Owner computes

• The Owner Computes Rule generally states that the 
process assigned a particular data item is responsible 
for all computation which changes its value

e.g.
a(i,j) = a(i,j) + 0.5*a(i+1,j) + 0.5*a(i-1,j) + …

• The ranges of i and j cover the points we own
• Assignments only to points we own
• Never assign e.g. to a(i-1,j)
• Can reference points we do not own on RHS



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Boundary exchange II

• We don't want processes communicating every time 
they need a single element from a neighbour

• Send boundary data after it has been updated
• Receive boundary data before it is used

a(i,j) = … … … 
send boundary values of a to neighbours
… 
…
receive boundary values of a from neighbours
… = … a(i+1,j) …



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Boundary exchange III

• We know that the LHS elements are local
• Look at the RHS terms – they determine the 

communications dependencies
• E.g. where the i-j grid corresponds to a longitude-

latitude grid we have the following …

… = … a(i+1,j) … Send data W (-i direction)
… = … a(i-1,j) … Send data E (+i direction)
… = … a(i,j+1) … Send data S (-j direction)
… = … a(i,j-1) … Send data N (+j direction)
… = … a(i+1,j+1) … Send data SW
… = … a(i+1,j-1) … Send data NW
… = … a(i-1,j+1) … Send data SE
… = … a(i-1,j-1) … Send data NE



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Partial exchange

• Note that we may not have to send in all directions -
look at the RHS code

e.g.
a(i,j) = 0.25*(a(i,j) + a(i+1,j) + a(i+1,j+1)+a(i,j+1))

• Only need to send in three directions – S, W and SW –
not all eight

• The communications can therefore be made much more 
efficient by paying attention to the requirements of the 
algorithm



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Unstructured grids

• Same principles apply as for structured grids
• Boundaries are lists of points rather than rows & columns
• Use a graph partitioning program to partition the grid

– most popular is Metis
http://www.cs.umn.edu/~metis

– provides optimal load balance
– minimizes cut edges for minimal communications

E.g. surface grid
for Lake
Superior



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Partitioning example

BAe Falcon airframe partitioned 
for 16 processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Checklist for parallelisation

• Partition the problem domain
– set up new indexes for the bounds of the sub-domain

• Assign sub-domains to processors
• Change loop bounds to run over the local sub-domain

– ensure the owner computes rule is obeyed

• Determine the communications dependencies
– examine the relationship between LHS assigns and RHS 

references to non-local data

• Insert communications calls
• Test correctness

– Results should be bit-wise identical with number of processors

• Test performance
– Scaling of performance with number of processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Comment on correctness

I said “Results should be bit-wise identical with number of 
processors” … is this really true?

• For halo exchange … YES
• For some global operations … NO
• Beware global sum

– on a digital computer (a+b)+c .ne. a+(b+c)
– global sum typically does a local sum on the processor then 

goes out over the network
– include some test code to do the sum in the serial way for 

when you are testing for correctness
#ifdef EXACT

gather data onto master, sum, broadcast result
#else

do a parallel global sum
#endif



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Summary

We have looked at …
• Serial Computing

– we need parallel computers to solve large problems

• Parallel Computing – The Hardware View
– there is a range of different architectures

• Parallel Computing – The Logical View
– there is a range of architecture independent views
– a range of programming environments

• Parallel Computing – Performance
– we know how to measure performance

• Parallel Computing – Overheads
– why know what causes poor parallel scaling

• Parallel Computing – Design
– knowing all the above helps us write a parallel code



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Checklist

What should you remember from this course?
1. Most common parallel programming technique

• Single-Program Multiple-Data (SPMD)
• Data parallelism
• (Fortran or C) + MPI

2. Data partitioning is key to program design and 
scalability

3. Scalability depends on a range of factors
• load imbalance, communications etc.

4. Investigate scalability of your code by plotting 
performance vs. number of processors



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Resources

Introduction to Parallel Computing

Grama, Gupta, Karypis & Kumar
http://www-users.cs.umn.edu/~karypis/parbook/

Slides and exercises are 
available on the website



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

MPI Resources

• MPI Home 
http://www.mpi-forum.org/

http://www-unix.mcs.anl.gov/mpi/
– Contains MPI documentation (english)

• Google “MPI exercises” leads to several sites
• “The Book”

Using MPI-2 - Advanced 
Features of the Message 
Passing Interface, 
William Gropp, Ewing 
Lusk and Rajeev Thakur

Example programs available on the Argonne website



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

Tomorrow Thursday 11th January there will be two 
sessions on MPI including practical exercises on the 

UTFSM cluster

Starting 12:10



a project funded by EuropeAid10th-11th January 2007 SCAT 1st Latin American Meeting, UTFSM, Valparaiso

The End

If you have been … thank you for listening


