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Méthode de Monte-Carlo pour les EDP non linaires.

Nizar Touzi, (CMAP, Ecole Polytechnique).

23 September, 2007.
The main major of this seminar was presenting a new generalization of the
well known Feynman-Kac’s formula for linear diffusions to the case of fully
nonlinear PDEs, i.e., trying to arrive to a stochastic representation of the
last ones and eventually try also Monte-Carlo methods to their numerical
approximation.
Let us consider standard Brownian motion Wt on a probability space (Ω,F , P)
together with the filtration generated by W itself. If there exists an FW

t -
adapted process (Y, Z) such that

Yt =ξ +

∫ T

t

Fr(Yt, Zt)dr −
∫ T

t

Zr · dWr

i.e. dYt = −Ft(Yt, Zt)dt − ZtdWt, and YT = ξ(ω)

where F : Ω× [0, T ]×R×R
d 7→ R, and {Ft(y, z), t ∈ [0, T ]} is FW -adapted,

then we say that (Y, Z) is a solution of the backward stochastic differential
equation (BSDE)(??). For example if F is Lipschitz in (y, z) uniformly in
(ω, t), and ξ ∈  L2(P), then there is a unique solution satisfying

E[sup
t≤T

|Yt|2] + E

∫ T

0

|Zr|2dr < ∞.
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Now let us concentrate ourselves in Markovian BSDEs, let us consider X
defined by the (forward) SDE

dXt = b(t, Xt)dt + σ(t, Xt)dWt

and Ft(y, z) = f(t, Xt, y, z), f : [0, T ] × R
d × R × R

d → R

ξ = g(XT ) ∈ L2(P), g : R
d → R.

If f is continuous, Lipschitz in (x, y, z) uniformly in t, then there is a unique
solution to the BSDE

dYt = −f(t, Xt, Yt, Zt)dt + Zt · dWt, YT = g(XT ).

More over there exists a measurable function V such that Yt = V (t, Xt), 0 ≤
t ≤ T. So by definition we have that

Ys − Yt = V (s, Xs) − V (t, Xt)

= −
∫ s

t

f(Xr, Yr, Zr)dr +

∫ s

t

Zr · dWr

Next if V is smooth we have by Itô’ s lemma that
∫ s

t

LV (r, Xr)dr+

∫ s

t

DV (r, Xr) · dWr

= −
∫ s

t

f(Xr, Yr, Zr)dr +

∫ s

t

Zr · σ(Xr)dWr.

Here L is the Dynkin operator associated to X:

LV = Vt + b · DV +
1

2
Tr[σσT D2V ].

So under some conditions, the semilinear PDE

− ∂V

∂t
− LV (t, x) − f(x, V (t, x), DV (t, x)) = 0

V (T, x) = g(x).

Has a unique solution which can be represented as V (t, x) = Y t,x
t , where Y t,x

solves the following BSDE,

Ys = g(XT ) +

∫ T

s

f(Xr, Yr, Zr)dr −
∫ T

s

Zr · σ(Xr)dWr, t ≤ s ≤ T,

and Xt = x, dXs = b(Xs)ds + σ(Xs)dWs, t ≤ s ≤ T.
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Them finally the author of this work make an interesting generalization of
these facts to derive stochastic representations of fully nonlinear PDEs of the
form (in particular, representation of general stochastic control problems).

−vt(t, x)+f(t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0 (t, x) ∈ [0, T )×R
d (1)

with terminal condition
v(T, x) = g(x).

Their results in short establish under certain regularity assumptions that if
the solution of (1) is regular enough, then a the same time the processes

Yt = v(t, Xs,x
t ), t ∈ [s, T ],

Zt = Dv(t, Xs,x
t ), t ∈ [s, T ],

Γt = D2v(t, Xs,x
t ), t ∈ [s, T ],

At = LDv(t, Xs,x
t ), t ∈ [s, T ].

Solve the following BSDE of second order

dYt = f(t, Xs,x
t , Yt, Zt, Γt)dt + Zt ◦ dXs,x

t , t ∈ [s, T ),

dZt = Atdt + ΓtdXs,x
t , t ∈ [s, T ),

YT = g(Xs,x
T ).

Here Zt ◦dXs,x
t denotes Fisk-Stratonovich integration, which is related to Itô

integration by

Zt ◦ dXs,x
t = ZtdXs,x

t +
1

2
Tr[Γtσ(Xs,x

t )σT (Xs,x
t )]dt.

And L is the infinitesimal generator of the diffusion Xs,x
t given by

dXt = µ(Xt)dt + σ(Xt)dWt,

Xs = x.

Once having the stochastic representation to PDEs of the form (1) a very
interesting question that comes immediate to mind is about the possibility
of applying Monte-Carlo methods to approximate the solution.
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Market Completion Using Options.

JAN OBLOJ, (Imperial College London).

Nov 2007.
It is well known that the Black-Scholes financial market model, consisting
of a price diffusion and a non-random money market account, is complete,
i.e., every contingent claim is replicated by a portfolio formed by dynamic
trading in the two assets. As soon as oneself consider more realistic models in
order to correct the empirical deficiencies of the B-S model, for example one
might consider models that include stochastic volatility or jumps in the asset
process, then completeness is lost if we continue to regard the original two
assets as the only tradable. In this seminar some criteria are exposed under
which trading in the underlying and a finite number of options completes
the market in a model that takes into account stochastic volatility. Here is
a brief description of this talk.

Consider a market in which an investor can trade in d assets
A = (A1, A2, . . . , Ad). It is assume that there is not arbitrage in the mar-
ket. Market completeness is investigated in [0, T ]. We therefore assume the
existence of an equivalent martingale measure P under which trading in this
market is fear, we also consider that the market factors are modeled with a
d-dimensional diffusion process (ξt)t ≥ 0, solution of the following SDE:

dξt = m(t, ξt)dt + σ(t, ξt)dWt, ξ0 = x0 ∈ D. (2)

Here Wt is d-dimensional Brownian motion in a probability triplet (Ω,L, P)
w.r.t. its natural filtration, and D is an open connected set. We make the
following assumption:

(2) has a unique strong solution with P(ξt ∈ D) = 1, t ≥ 0,

σ(t, x)σ(t, x)T is extrictly positive for a.e. (t, x) ∈ [0, T ×D].

The traded assets are of European type, asset Ai has a given payoff hi(ξTi
) at

maturity Ti, larger than the time-horizon on which we investigate complete-
ness T ≤ Ti. As we work under the risk neutral measure P, the discounted
price process of an asset is a martingale, i.e.,

Ai = E
[

e−r(Ti−t)hi(ξTi
)
∣

∣Ft

]

, 0 ≤ t ≤ Ti. (3)

We consider next the semi-group of (ξt) denoted by (Pu,t), i.e. Pu,th(x) =
E

x,u[h(ξt)] := E[h(ξt)|ξu = x], u ≤ t. The Markov property of (ξt) implies
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that

Ai = vi(t, ξ), where vi(t, ξ) = e−r(Ti−t)Pt,Ti
hi(x).

We assume that vi are of class C1,2 on (0, T ) ×D, 1 ≤ i ≤ d.
Let G(t, x) be the matrix of partial derivatives,

G(t, x) =
(∂vi(t, x)

∂xj

)

1≤i,j≤d

The following practical criteria for market completeness is t he main target
of t his seminar.

Theorem 1 Under the assumptions done above and if further mi, σi : (0, T )×
D → R, 1 ≥ i ≥ d, are real analytic functions. Then the market is com-
plete if and only if there exists a point (t0, x0) ∈ (0, T )×D such that G(t0, x0)
and σ(t0, x0)σ(t0, x0)T are non singular.

Hedging and Optimization in a Geometric Additive Market.

JOSÉ M. CORCUERA, (University of Barcelona.).

30 November, 2007.
The exposition occurs in 5 steeps as follows:

• An additive model of asset prices is proposed.

• The existence and nature of equivalent martingale measures are inves-
tigate.

• The possibility of completing the market including some other assets
tradable(i.e. for example options) in considered.

• Then the hedging of a portfolio is analyzed.

• Last, the problem of portfolio optimization is also considered.

Let us present the main ideas. The market model proposed consists of an
exponential additive model formed by a risk free bond B = {Bt, t ≥ 0}, where
Bt = exp(

∫ t

0
rsds), with rs deterministic and a risky stock S = {St, t ≥ 0}

that verifies:

dSt

St−
= dZt, S0 > 0. (4)
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Here Z is a natural additive process with local characteristics (with respect
to the Lebesgue measure) (c2

t , νt, γt), that means in more familiar terms using
the Lévi-Itô decomposition that our process Z can be written as

Zt =

∫ t

0

csdWs + Xt. (5)

Here Wt is standard Brownian motion and X = {Xt, t ∈ [0, T ]} is a jump
process independent of W , this jump part is given by

Xt =

∫

{s∈(0,T ],|x|<1}

x(J(ds, dx) − νs(dx)ds)

+

∫

{s∈(0,T ],|x|≥1}

xJ(ds, dx) +

∫ t

0

γsds.

Here J(ds, dx) is a Poisson random measure on [0, T ]×R−{0} with intensity
measure νt(dx)dt. The next theorem talks about the relation between two
equivalent measures in this model.

Theorem 2 Let Z = {Zt, 0 ≤ t ≤ T} be an additive process with local
characteristics (c2

t , νt, γt). Then if there is a probability measure Q equivalent
to P , such that Z is a Q-natural additive process with local characteristics
(with respect to the Lebesgue measure) (c̄2

t , ν̄t, γ̄t) we have

1. ν̄t(dx) = H(t, x)νt(dx) for some Borel function H(t, x)R+ × B →
(0,∞).

2. γ̄t = γt+
∫ +∞

−∞
x1{|x|<1}(H(t, x)−1)νt(dx)+Gtc

2
t for some Borel function

G : R
+ → (0,∞).

3. c̄t = ct. For every 0 ≤ t ≤ T .

It happens that the solution of (4) looks like

St = S0 exp
(

Zt −
1

2

∫ t

0

c2
sds

)

∏

0<s≤t

(1 + ∆Zs) exp(−∆Zs). (6)

Here ∆Zs = Zs − Zs− denotes the jump of Z at time s. Then from theorem
2 if we consider St in (6), and write it in the dynamics corresponding to an
equivalent probability measure with the local characteristics (c̄2

t , n̄ut, γ̄t) we
will obtain

S̄t = S0 exp
(

∫ t

0

csdW̄s + L̄t +

∫ t

0

(

as − rs + Gsc
2
s −

c2
s

2

)

ds
)

× exp
(

∫ t

0

∫ +∞

−∞

x(H(t, x) − 1)νs(dx)
)

ds
∏

0<s≤t

(1 + ∆L̄s) exp(−∆L̄s).
(7)
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W̄t = Wt −
∫ t

0
Gscsds is Q-Brownian motion, also the process Xt has the

Q-Doob-Meyer decomposition

Xt = L̄t +

∫ t

0

asds +

∫ t

0

∫ +∞

−∞

x(H(s, x) − 1)ν(dx)ds.

Here L̄t ,is a Q-martingale and ν̄t(dx) = H(t, x)νt(dx), for all 0 ≤ t ≤ T .
Next the necessary and sufficient condition for S̄t to be a Q-martingale rests

Gtc
2
t + at − rt +

∫ +∞

−∞

x(H(t, x) − 1)νt(x) = 0.

Next one completes the market considering the following martingales

H
(i)
t = Z

(i)
t − EQ(Zi

t).

Here Z
(i)
t =

∑

0<s≤t(∆Zs)
i, i ≥ 2, in such way that if (Mt) is any Q-

squared-integrable contingent claim X. En particular for the martingale

Mt := EQ[(e−
R

T

0
rsds)X|Ft] Then

dMt =
∞

∑

k=1

βk
t dH̄

(k)
t . (8)

Here H̄(k) are the orthogonal version of the processes H
(k)
t , the βk

t are pre-
desible processes that are interpreted as the strategy of replication for the
contingent claim X. Finally we recall that a result of representation like that
on (8) allowes one then to develop the classical ideas and calculations used
to solve the hedging and the optimal portfolio allocation problems.

Join conditional density of a Markov process and its local time

with applications to default risk modeling.

UMUT ÇETIN, (Department of statistics, London School of Economics).

23 November, 2007.
Suppose that the default time of a certain firm is modeled by some τ which
is a positive random variable defined on a probability space (Ω,H, P).

A standard assumption is that P(τ = 0) = 0 and P(τ > 0) > 0 for all
t ∈ R+. There is also a reference filtration F = (Ft)t≥0 that models the
flow of information obtained from relevant (or irrelevant) asset prices, news
accounting information, etc. Typically τ is not an F -stopping time, that is
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the event {τ > t} can not be decide from Ft, but since default is a public
event, a new filtration G which is obtained by enlarging F just enough so
that τ becomes a G-stopping time is considered. The interest is then over
probabilities like P(τ > T |Gt), which would give a price for the defautable
zero-coupon bond provided P is some risk-neutral measure. The key formula
that links the two filtrations F and G, due to Dellacherie is that for any
Y ∈ H

E[1[r>t]Y |Gt] = 1[r>s]

E[1[r>t]Y |Ft]

P(r > s|Ft)
, for s ≤ t.

Applications to default risk

Consider a company which issues a bond with face value of $1 and maturity
T > 0. Let θt a proxy for the firm value such that

dθt = σ(θt)dWt + µ(θt)dt, (9)

θ0 = 0. (10)

Here σ : R → R and µ : R → R are Lipschitz. suppose moreover that
σ(·) > 0. Let τ the first time that θ falls below a < 0. The firm will default
and wont́ make payments if τ ≤ T . that is why, the set of probabilities
P(τ > t|Ft) are important in this problem, to analyze them we start by the
most simple case of studding the situation weather he Brownian motion reach
a certain level.

Definition 1 Let W standard Brownian motion defined on (Ω,F , P). Define
for a < 0,

τa := inf{t > 0 : Wt = a}.
Let Lx be the local time process of W at level x ∈ R which could be defined
by the following a.s. limit

lim
ε→0

1

ε

∫ t

0

1[x≤Ws≤x+ε]ds. (11)

Among other properties of the local time process we have

• It satisfies for each t ≥ 0,

|Wt − x| − |x| =

∫ t

0+

sgn(Ws − x)dWs + Lx
t .

• Lx
t is continuous and increasing for each x.
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• (Occupation times formula) For any bounded measurable real function
g,

∫ ∞

−∞

Lx
t g(x)dx =

∫ t

0

g(Ws)ds.

• L0
t > 0 for all t > 0.

It is also known that in this normal(Gaussian) case the distribution of the
local time is,

P(Lx
t ≤ y) = 2Φ

(y + |x|√
t

)

− 1.

Here Φ is the cumulative distribution function of standard normal. Now
recall a < 0, we have then that,

P(La
t = 0) = 2Φ

(

− a√
t

)

− 1

= 1 − 2Φ
( a√

t

)

= 1 − 2P(Wt ≤ a) = P(τa > t).

due to the reflexion principle of Brownian motion. But let us remember that
we are interested in more general cases than that of Brownian motion. Going
back to our model of default risk (9), we remark that the process θt is no
publicly observable but one extracts information about it from the market
trough a process Y which satisfies,

dYt = dBt + α(t, θt, Yt)dt,

Y0 = 0.

Here α is Lipschitz, and Bt is a Brownian motion whose quadratic variation
with respect to Wt is given by,

d

dt
[B, W ]t = ρ(t, θt, Yt).

Suppose τ := inf{t > 0 : θt = a}, for a < 0 is finite a.s. so we are not dealing
with a vacuous problem. We remark that we are interested in probabilities
that concern the distribution of τ . We recall that it models a default sit-
uation. To this end are considered some generalizations of the calculations
that are done in the case of Brownian motion, in this last case for example
some processes related with τ are considered in order to obtain information
about the distribution of τ , by such information we refer ourselves to the
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densities of such processes for example. this densities are obtain more or leas
as follows. Consider the family of processes,

Xt =
1

ε

∫ t

0+

1[a≤θs≤a+ε]σ
2(s, θs)ds.

It happens that Xε
t converges to La

t a.s. for every t as ε → 0+. La is the local
time of θ at a. Let us introduce the following notation,

gL
t (x) := P[La

t ∈ dx|FY
t ]/dx, for x ∈ R

+,

gLθ
t (x, θ) := P[La

t ∈ dx, θt ∈ dθ|FY
t ]/dxdθ, for (x, θ) ∈ R

+ × R

L∗gLθ
t (x, θ) = −δa(θ)σ2(t, a)

∂

∂x
gLθ

t (x, θ) − ∂

∂θ

[

gLθ
t (x, θ)µ(t, θ)

]

+
1

2

∂2

∂θ2

[

gLθ
t (x, θ)σ2(t, θ)

]

,

N ∗gLθ
t (x, θ) = − ∂

∂θ

[

gLθ
t (x, θ)ρ(t, θ, Yt)σ(t, θ)

]

.

I.e., gL
t (x) and gLθ

t (x, θ) are respectively the density and joint density of the
local time Lx

t and θ together with Lx
t , in the formulas above the derivatives

are consider in distributional sense, δa(·) denotes the delta Dirac measure
supported at a ∈ R. The result than we want to state is that under certain
conditions the functions gLθ

t (x, θ) and gL
t (x) satisfy the following stochastic

partial differential equations, SPDEs, where the derivatives should be con-
sider in the distributional sense.

gLθ
t (x, θ) = gLθ(x, θ) +

∫ t

0

L∗gLθ
s (x, θ)ds

+

∫ t

0

{

N ∗gLθ
s (x, θ) + gLθ

s (x, θ)(α(s, θ, Ys) − πs(α))
}

dBs,

gL
t (x) = gL

0 (x) −
∫ t

0+

σ2(s, a)
∂

∂x
gLθ

s (x, a)ds

+

∫ t

0+

∫ ∞

−∞

gLθ
s (x, θ)(α(s, θ, Ys) − πs(α))dθdBs.

So the solutions of these SPDEs provide the relevant probabilities to solve
the problem of risk default in more general situations. Imaging then the
numerical challenges settled by these equations.

10



Optimal Stopping under Ambiguity.

FRANK RIEDEL, (University of Bunn).

14 December, 2007.
Consider the classical problem of optimal stopping in finance, that of the
price of an American put option. An American option is a contract that once
bought at time t0 can be exercised at any later time before the maturity time
T and that makes the profit (K − Ss)

+ at the right instant s ∈ [t0, T ] when
it is exercised, here as usual K is the fixed strike price at the time maturity
T . Since this contract can be exercised at any time s ∈ [t0, T ] intuitively one
tries to find the time where exercising gives the best return, the price of a
such American put option is found then to be,

U = sup
τ

E[e−r(T−t0)(K − Sτ )|Ft0]. (12)

In the classical theory it is assumed some fixed stochastic model for St the
price of the underlying stock, a very interesting situation which is the central
topic of this seminar is what could be done in the case where there is some
uncertainty concerning the model for St and some responses are given in the
discrete setting, then the title of the seminar becomes clear.

Statement of the problem

Let (Ω,F , P0, (Ft))t∈N be a filtered probability space. Let (Xt)t∈N be an
adapted process, assumed bounded, that describes the payoff from stopping.
The decision maker chooses a Ft-stopping time τ with values in N ∪ {∞}.
From stopping she obtains a payoff Xτ (ω) = Xτ(ω)(ω) for ω ∈ Ω, she aims to
maximize the expected reward and as she is uncertain about the distribution
of X, she uses a class Q of probability measures on (Ω,F). The (minimax)
expected reward is thus given by

inf
P∈Q

E
P [Xτ ]. (13)

I.e., she aims to reach the best possible reward when the conditions are
the most adverse. We recall the main target said the maximization of
infP∈Q E

P [Xτ ] over all stopping times τ ≤ T . An essential assumption that
lets develop the theory is the said, stability under pasting, or time-consistency
of the family of probability measures Q.

Assumption 1 The set of priors Q is time-consistent in the following sense.
for P and Q in Q, let (pt) and (qt) the density processes of P resp. Q with
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respect to a fixed reference measure P0 which is also in Q, i.e.

pt =
dP

dP0

∣

∣

Ft

,

and analogously for Q. Fix some stopping time τ . Define a new probability
measure R by setting for all t ∈ N

dR

dP0

∣

∣

Ft

=

{

pt if t ≤ τ
pτ qt

qτ

else
(14)

Then R belongs to Q as well.

Finally we will limit ourselves to enunciate the main results that carry out
the solution of the problem, it is worth noting that they are generalizations
of the basic martingale theory. We start by the central definition in this
context

Definition 2 Let Q be a set of priors. Let (Mt)t∈N be an adapted process
with E

p|Mt| < ∞ for all P ∈ Q and t ∈ N. (Mt) is called a minimax
(sub-super) martingale with respect to Q if we have for t ∈ N

ess inf
P∈Q

E
P [Mt+1|Ft] = (≥,≤)Mt.

Lemma 1 Let (Mt) be a bounded, adapted process.

1. M is a minimax submartingale if and only if it is a P -submartingale
for all P ∈ Q,

2. M is a minimax supermartingale if and only there exists P ∗ ∈ Q such
that M is a P ∗-supermartingale,

3. M is a minimax martingale with respect to Q if and only if

(a) there exists P ∗ ∈ Q such that M is a P ∗-martingale and

(b) M is P -submartingale for all P ∈ Q.

Theorem 3 Define the minimal Snell envelope of X with respect to Q re-
cursively by UT = XT and

Ut = max
{

Xt, ess inf
P∈Q

E
P [Ut+1|Ft]

}

(t = 0, . . . , T − 1). (15)

Then
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1. U is the smallest minimax supermartingale with respect to Q that dom-
inates X.

2. U is the value process of the optimal stopping problem under ambiguity,
i.e.

Ut = ess sup
τ≥t

ess inf
P∈Q

E
P [Xτ |Ft] (16)

The best reward when the conditions are the most adverse.

3. an optimal rule is given by

τ ∗ = inf{t ≥ 0 : Ut = Xt}.

RESEARCH

During this time the question of adapting the method of optimal quanti-
zation which I was known in one of the first seminars, to a problem that
concers doctoral thesis and consist on the numerical calculation of the fol-
lowing high dimensional integral

∫∫ T

t

∂UBS

∂S
(ξT )e−θs(ηs−ηT )h(Ys)Ψ(ξT , ηT , T ; θs, ηs, Ys, s; y, t)d(θs, ηs, Ys, s, ηT , ξT ).

Here Ψ(ξT , ηT , T ; θs, ηs, Ys, s; y, t) denots the joint density of involved pro-
cesses(below), in the indicated times.

ηs := 2

∫ s

t

σ(Yr)σ
′(Yr)e

θrdr,

θs :=

∫ s

t

f ′(Yr)dr,

ξT =

∫ T

t

σ2(Ys)ds,

f(y) = α(m − y) − βγ(y).

Here σ and γ are real functions with appropiate characteristics. I did not
know the quatization algorithm befor, it seens that it adaptates better than
Monte Carlo method in some situations, I belive then have in hands a very
interesting non trivial application of it.
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